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ABSTRACT: Wafer-scale nanoribbon field-effect transistor
(FET) biosensors fabricated by straightforward top-down
processes are demonstrated as sensing platforms with high
sensitivity to a broad range of biological targets. Nanoribbons
with 350 nm widths (700 nm pitch) were patterned by chemical
lift-off lithography using high-throughput, low-cost commercial
digital versatile disks (DVDs) as masters. Lift-off lithography
was also used to pattern ribbons with 2 μm or 20 μm widths (4
or 40 μm pitches, respectively) using masters fabricated by
photolithography. For all widths, highly aligned, quasi-one-dimensional (1D) ribbon arrays were produced over centimeter
length scales by sputtering to deposit 20 nm thin-film In2O3 as the semiconductor. Compared to 20 μm wide microribbons,
FET sensors with 350 nm wide nanoribbons showed higher sensitivity to pH over a broad range (pH 5 to 10). Nanoribbon
FETs functionalized with a serotonin-specific aptamer demonstrated larger responses to equimolar serotonin in high ionic
strength buffer than those of microribbon FETs. Field-effect transistors with 350 nm wide nanoribbons functionalized with
single-stranded DNA showed greater sensitivity to detecting complementary DNA hybridization vs 20 μm microribbon FETs.
In all, we illustrate facile fabrication and use of large-area, uniform In2O3 nanoribbon FETs for ion, small-molecule, and
oligonucleotide detection where higher surface-to-volume ratios translate to better detection sensitivities.
KEYWORDS: chemical lift-off lithography, soft lithography, nanofabrication, small-molecule sensing, DNA hybridization

Label-free, ultrasensitive chemical and biological sensors
that monitor biomarkers in body fluids and tissues have
broad applications in healthcare and biomedical

research, including cancer diagnostics,1,2 DNA detection,3−6

bacteria and virus detection,7−9 and metabolite monitor-
ing.10−14 Developing sensors that provide accurate, real-time
information regarding multiple analytes with high sensitivity
and selectivity is at the heart of next-generation personalized
medical devices, such as point-of-care measurements and
implantable and wearable sensors.15−25 Nanoelectronic field-
effect transistor (FET) biosensors have been explored as
platforms having unique properties and advantages toward the
realization of these applications.
Indium oxide has been used to fabricate FET sensors with

higher sensitivities, more straightforward surface functionaliza-
tion, and greater stability in aqueous environments compared
to other channel materials, including graphene and MoS2.

26−28

Moreover, compared to other metal oxides, such as indium−
gallium−zinc oxide, In2O3 is stable in buffers simulating
physiological environments.29,30 Bottom-up strategies were
used to prepare In2O3 nanowires for use as gas sensors,

chemical sensors, biosensors, and optical detectors.31−34

However, similar to other bottom-up fabricated FETs, such
as Si nanowires or carbon nanotubes, bottom-up fabricated
In2O3 nanowire sensors suffer from poor device-to-device
reproducibility due to random orientations and variable
numbers of nanowires between electrodes.35,36

In contrast, top-down fabrication strategies, for example, soft
lithography, soft lithographic molecular printing,37−39 nano-
imprint lithography,40,41 and nanotransfer printing,42−45

provide precise control over the morphologies and shapes of
nanomaterials. Top-down In2O3 nanoribbons fabricated by
straightforward photolithographic processes and low-temper-
ature sputtering methods show high device uniformity and
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reproducibility.30 We previously developed a lithography-free
process involving sputtering In2O3 through shadow masks to
fabricate ribbons of 25 μm width, ∼16 nm thickness, and
500 μm length over centimeter scales.30,46,47 These devices
(previously referred to as nanoribbons due to the nanoscale
height of the sputtered In2O3) had high field-effect mobilities
(>13 cm2 V−1 s−1), large current on/off ratios (>107),30,46 and
functioned as sensors in a variety of applications including pH
sensing, cardiac biomarker detection, and wearable sensors for
glucose monitoring.30,46,47 Flexible multifunctional sensor
arrays incorporating these 25-μm-wide ribbons have also
been developed to measure temperature, pH, and the
neurotransmitters serotonin and dopamine, simultaneously.48

Nonetheless, ribbons fabricated via shadow masks are limited
in lateral resolution to tens of microns.
Surface-to-volume ratio is a critical parameter impacting

nanobiosensor sensitivity, where higher ratios result in greater
target sensitivities.32,36,49−55 Here, we advance a generalizable,
facile, top-down strategy for fabricating highly aligned In2O3
nanoribbons.56,57 We employ chemical lift-off lithography
(CLL), which is a soft lithography patterning approach that is
cleanroom-free, high-throughput, and high-fidelity and enables
micro- and nanopatterning to produce features as small as
15 nm.58−65 In CLL, polydimethylsiloxane (PDMS) stamps
with desired patterns are used to remove molecules self-
assembled on Au surfaces selectively in the stamp contact
areas. The remaining molecules in the noncontacted regions
act as resists during wet etching to form three-dimensional
features. We used CLL to pattern Au micro- and
nanostructures, including Au nanoribbon, disk, square, and
circle arrays, and to pattern other metal and semiconductor
surfaces.26,56,62,66

Here, we combined sputtering with CLL to produce 20 nm
thin-film In2O3 ribbons at 350 nm, 2 μm, or 20 μm widths and
wafer scales. As-fabricated ribbons were aligned between
source and drain electrodes with controllable orientations,
numbers, and sizes. Micro- and nanoribbon FET biosensors
with different aspect ratios were characterized and compared.
The 350 nm wide nanoribbon FETs showed sensitivities for
target detection greater than those of 20-μm-wide microribbon
FETs, providing further evidence for the concept that higher

surface-to-volume ratios confer greater sensitivities in nano-
biosensing applications.

RESULTS AND DISCUSSION
The general In2O3 micro- and nanoribbon fabrication process
is shown in Figure 1 and is described in detail in Materials and
Methods. We fabricated ribbon features for subsequent In2O3
sputtering followed by a process to remove Au/Ti features,
leaving behind In2O3 micro- or nanoribbons. We used
commercial digital versatile disks-recordable (DVD-R) as
templates to fabricate 350-nm-wide nanoribbons. These disks
are economical, easily accessible masters (<$0.5/disk). Blank
DVD-R disks contain sub-micrometer grating features.56,57

The DVD-R masters were prepared by a straightforward
separation and rinsing process as previously described.54,55

Hard PDMS (h-PDMS) was used to replicate the high-aspect-
ratio DVD-R features.56,57

The DVD-R nanoribbon features, transfer of these features
to h-PDMS, and further transfer to alkanethiol monolayers on
Au have been characterized.56,57 Previously, we deposited
In2O3 via a sol−gel process with the Au/Ti layers deposited on
top.56 The self-assembled monolayers (SAMs) on Au were
then patterned. The Au/Ti areas that were not contacted by
activated h-PDMS served as wet etching masks. The stamp-
contacted/exposed Au/Ti features were etched to expose the
underlying In2O3.
Our previous patterning approach resulted in overetching,

which limited precise patterning.56 Even when overetching was
avoided, etching undercut the protective Au/Ti features to
produce In2O3 nanoribbons that were narrower and less
reproducible compared to the features of the masters.56,57

Further, nanoribbons patterned using the previous method had
a high degree of line-edge roughness. Here, we addressed these
previous shortcomings by sputtering thin-film In2O3 af ter Au/
Ti etching, resulting in high-fidelity In2O3 nanoribbons
fabricated over large areas.
Sputtering of In2O3 was carried out normal to the substrate

surface such that undercut of the Au/Ti structures did not
influence the widths of the resulting In2O3 nanoribbons.
Nanoribbons (350 nm) were imaged before and after the lift-
off process using atomic force microscopy (AFM), as shown in

Figure 1. Schematic illustration of the fabrication process for In2O3 nanoribbons. Step 1: A Au layer (30 nm) was deposited over Ti (30 nm)
on Si/SiO2 (100 nm). A monolayer of 11-mercapto-1-undecanol was then self-assembled on the Au surface. Step 2: An oxygen plasma
“activated” polydimethylsiloxane (PDMS) stamp with micro- or nanoribbon features was brought into conformal contact with the substrate.
Step 3: Stamp removal from the surface (chemical lift-off lithography, CLL) lifted off self-assembled molecules in the contacted areas. Step
4: Selective etching processes removed Au and Ti in the unprotected (contacted) regions on the surface. Step 5: Sputtering was used to
deposit In2O3 (20 nm) over the entire substrate. Step 6: The remaining Au/Ti structures were removed to obtain In2O3 nanoribbon arrays.
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Figure 2. Using the present fabrication process, In2O3
nanoribbons had heights of ∼60 nm after In2O3 sputtering
(Figure 2a), corresponding to the sum of the heights of the
underlying Au and Ti layers. Sputtering does not add to the
apparent height difference as In2O3 was sputtered atop both
the patterned Au and the interleaved Si areas.
After the Au/Ti nanoribbon structures (and the overlying

In2O3) were removed, uniform and continuous In2O3 nano-
ribbons with 350 nm widths and 20 nm heights remained, as
shown via AFM (Figure 2b). To compare the widths and
heights of the ribbons before and after removal of the Au
templates, height profiles along the nanoribbons were analyzed
(Figure 2c). The widths of In2O3 nanoribbons matched the
spacing between the Au nanoribbons, demonstrating high-
fidelity patterning and features characterized by sharp edges
and high continuity.
Nanoribbons were fabricated on 1.5 cm × 1.5 cm Si wafers.

The light blue In2O3 nanoribbon patterned region in the center
of a representative wafer showed a strong iridescence when
viewed at nonperpendicular angles under white light, indicative
of periodic (diffraction) grating patterns on the surface (Figure
2d). Scanning electron microscopy (SEM) indicated that
nanoribbons were continuous over tens of microns and highly
defined at the single nanoribbon scale (Figure 2e,f). Energy-
dispersive X-ray (EDX) mapping was performed (Figure 2g),
where the indium Lα1 energy of 3.286 keV (Figure S1) was
mapped and calculated (Table S1). The EDX images showed
In2O3 nanoribbons with ∼350 nm widths, consistent with the
results from AFM and SEM imaging.
To construct micro- and nanoribbon FETs, the orientations

of well-aligned In2O3 structures were identified by AFM or
SEM. Source and drain electrodes were then fabricated
perpendicular to the nanoribbons (Figure 3a) or microribbons.
The Au/Ti source and drain electrodes were deposited on top
of as-prepared In2O3 ribbons via electron-beam (e-beam)
evaporation. Interdigitated electrodes with lengths of 1300 μm
and widths of 45 μm were prepared (Figure S2). Electrodes

aligned well with as-fabricated 350 nm wide In2O3 nanorib-
bons, as shown in the SEM images in Figure 3b,c. Substrates
with 2- or 20-μm-wide In2O3 microribbons similarly
demonstrated well-aligned configurations between the ribbons
and electrodes (Figure 3d,e and Figure S3).
As discussed above and previously reported,35,36 the

orientations and numbers of nanowires or nanoribbons are
challenging to control using bottom-up approaches. By
contrast, using a top-down CLL patterning approach,
orientations and numbers of ribbons were straightforwardly
controllable based on the widths and pitches of the ribbons
and the widths of the electrodes. For example, ∼1850 350-nm-
wide In2O3 nanoribbons were incorporated and aligned with
each pair of electrodes. Transistor performances were tested
using a bottom-gate top-contact configuration, where p++ Si
served as the bottom gate and SiO2 as the gate dielectric
(Figure 3f). Transfer and output curves for 350-nm-wide In2O3
nanoribbon FETs are shown in Figure 3g,h, respectively,
demonstrating current on/off ratios >106. The FETs with 2- or
20-μm-wide ribbons, or continuous thin-film In2O3 FETs
showed similar characteristics in solid-state measurements
(Figure S4).
The electrical performance of 350-nm-wide nanoribbon FET

devices in a liquid environment was tested using solution
gating, which corresponds to how devices were used for
biosensing (vide inf ra). Each device was covered with a PDMS
well filled with an electrolyte solution (Figure 4a). A Ag/AgCl
reference electrode was used to apply a bias voltage through
the electrolyte solution to gate each FET. Transfer and output
curves for liquid-gated 350-nm-wide In2O3 nanoribbon FETs
in phosphate-buffered saline (PBS) are shown in Figure 4b,c,
respectively. The nanoribbon FETs fabricated here operated in
a liquid environment with current on/off ratios of 103, transfer
curve saturation behavior, low gate leakage currents (Figure 4d
and Figure S5), and low driving voltages. Microribbon FETs
with different widths or continuous thin-film FETs showed
similar liquid-state performance characteristics (Figure S6).

Figure 2. Atomic force microscope (AFM) images of 350 nm nanoribbon substrates (a) before (Step 5, Figure 1) and (b) after removing
underlying Au structures (Step 6, Figure 1). (c) Height profiles from the AFM images in (a,b) across the nanoribbons. (d) Photographs of
In2O3 nanoribbons at different viewing angles. (e,f) Scanning electron microscope (SEM) images of 350 nm wide In2O3 nanoribbons. (g)
Energy-dispersive X-ray mapping of indium corresponding to the SEM image in (f).
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Ion-sensitive FETs (ISFETs), where FETs respond to
changes in environmental ion concentrations, are used for a
majority of FET chemical and biological sensing applica-
tions.67−71 To investigate the performance of In2O3 nano-
ribbon ISFETs, we conducted pH sensing by systematically
increasing the hydrogen ion concentrations of the solutions
contacting FETs. We previously compared the pH sensitivities
of 25-μmwide In2O3 ribbon FET sensors having different
ribbon heights.30 Microribbons having thinner, 10- or 20-nm
In2O3 films showed higher sensitivities to pH compared to
thicker microribbons (e.g., 50-nm In2O3 films). Here, micro-
and nanoribbons with constant 20 nm heights were used to
compare the effects of changing ribbon widths.
Threshold voltage changes of ISFETs were determined for

350-nm-wide nanoribbons from pH 5 to 10. Representative
transfer curves (drain current to gate voltage) are shown in
Figure 4d. Time-related increases in drain current were
observed with decreasing pH values (Figure 4e), which is
typical for n-type semiconductor gate-voltage modulation
behavior.27,46,47 At lower pH values, there are greater numbers

of positively charged hydrogen ions in solution, leading to
higher currents as more negative charge carriers are generated
in n-type channels. Here, In2O3 was functionalized with
(3-aminopropyl)triethoxysilane (APTES), where the terminal
amine undergoes protonation and deprotonation with changes
in pH. Notably, In2O3 FETs are less stable at low pH due to
the chemical nature of metal oxides, which react with acids to
form salts.56

Relative pH sensing responses for 350-nm vs 20-μm-wide
In2O3 nanoribbon FETs were compared (Figure 4f). Device
currents for both configurations increased as the [H+]
increased (i.e., pH decreased). Surface-to-volume ratios for
FETs with different ribbon widths were calculated (see
Supporting Information, Figure S7). Ribbons with 350 nm
widths had a 10% increase in surface-to-volume ratio compared
to ribbons with 20 μm widths (Table S2). Yet, this modest
increase in surface-to-volume ratio was sufficient to produce
increased pH sensitivity, particularly at lower pH (P < 0.01)
(see Table S3 for full statistics). These findings provide

Figure 3. (a) Schematic illustration of the field-effect transistor (FET) configuration using In2O3 nanoribbons (or microribbons) as the
channel material aligned perpendicular to source and drain electrodes. (b,c) Scanning electron microscope images of 350-nm-wide In2O3
nanoribbons with source and drain electrodes. (d,e) Scanning electron microscope images of 2-μm-wide In2O3 nanoribbons with source and
drain electrodes. (f) Photograph (top) and schematic illustration (bottom) of the solid-state measurement setup for In2O3 nanoribbon (and
microribbon) FETs, where p++ Si serves as the bottom gate. The lavender layer is SiO2. Transfer (g) and output (h) characteristics of
representative 350 nm In2O3 nanoribbon FETs.
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evidence that FETs with nanoscale features having higher
surface-to-volumes are associated with higher ion sensitivities.
Debye screening in high ionic strength solutions presents

challenges for FET biosensing in physiological environ-
ments.49,72,73 Overcoming Debye-length limitations enables
the detection of biological targets ex vivo and in vivo to extend
potential uses of FET biosensors for medical and biological
applications, such as sensing in body fluids for point-of-care or
at-home monitoring. We developed aptamer-based FET
biosensors for small-molecule detection under high ionic
strength conditions.14,20,26 Aptamers, which are single-stranded
oligonucleotides isolated specifically for adaptive target
recognition, are functionalized on semiconductor surfaces.
Upon target binding, aptamers undergo conformational
rearrangements involving their negatively charged backbones
(and associated solution ions), resulting in charge redistrib-
ution near semiconductor surfaces. Signal transduction arising
from aptamer charge redistribution has enabled direct

detection of charged as well as neutral small-molecule targets
under physiological conditions.14

Aptamers that selectively recognize serotonin were cova-
lently immobilized on In2O3 (and SiO2) ribbons (Figure 5a).
Aptamers on the SiO2 dielectric contribute minimally to target-
induced currents. We conducted neurotransmitter sensing by
adding increasing concentrations of serotonin into the PBS
solutions above FETs. Representative transfer curves for
350-nm-wide In2O3 nanoribbon FETs at different serotonin
concentrations are shown in Figure 5b. Calibrated response
curves comparing the performance of 350-nm- vs 20-μm-wide
ribbons both having 20-nm thin-film In2O3 are shown in
Figure 5c.
Nanoribbons with 350 nm widths showed a trend toward

larger calibrated responses to serotonin compared to those of
20-μm-wide nanoribbons (0.1 < P < 0.05). Differences in
performance for the two FET configurations were apparent at
serotonin concentrations between 100 fM and 1 nM, where

Figure 4. (a) Schematic illustration of a liquid state measurement where a Ag/AgCl electrode serves as the top gate. Transfer (b) and output
(c) characteristics of 350-nm-wide In2O3 nanoribbon field-effect transistors (FETs) in the liquid-gate setup shown in (a). (d) Transfer
curves of 350-nm-wide In2O3 nanoribbon FETs in solutions of pH 10 to 5. (e) Real-time current responses from a representative 350-nm-
wide In2O3 nanoribbon FET exposed to commercial buffer solutions of pH 10 to 5. (f) Current responses relative to baseline for solutions of
pH 10 to 5 using 350-nm- or 20-μm-wide ribbon In2O3 FETs. I/I0 is current normalized to the baseline pH before the experiments (I0, pH
7.4). Error bars are standard errors of the means with N = 3 FETs for each configuration.
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sensor responses were linear for both configurations but left-
shifted for 350-nm-wide nanoribbons. Tuning nanoribbon
widths provides another strategy for shifting overall device
sensitivities, in addition to truncating or destabilizing aptamer
stems and/or changing aptamer surface densities.14,20 These
strategies will be important for translation to in vivo sensing
applications where target concentrations vary widely, such as
serotonin concentrations in the gut (micromolar range)74 vs
the brain extracellular space (nanomolar range).75

Previously, we found that even small changes in pH affect
aptamer−FET sensor responses.48 This effect was attributed to
H+-associated changes in charge redistribution around
aptamers and near FET surfaces. For in vivo applications
where the environmental pH varies, for example, in
conjunction with neuronal burst firing, we showed that

incorporation of a separate pH sensor as part of a multiplexed
device differentiated changes in pH from changes in neuro-
transmitter concentrations.48 In previous work, we also carried
out control experiments to determine target-specific detection
using unfunctionalized FETs and FETs functionalized with a
scrambled serotonin aptamer sequence, as well sensing in the
presence of structurally similar interferants, which indicated
that serotonin−aptamer FETs are highly selective.14,48 More-
over, we have investigated real-time serotonin sensing
(femtomolar−micromolar) with a temporal resolution of
≤5 s, which was limited by the measurement system response
time.48

In addition to ions and small molecules, oligonucleotide
sensing is important for clinical diagnostics, such as genotyping
for cancer immunotherapy and for diagnosing infectious

Figure 5. (a) Schematic illustration of serotonin detection using aptamer-functionalized In2O3 field-effect transistor (FET) biosensors. (b)
Representative transfer curves for serotonin responses from 10 fM to 100 μM for 350-nm In2O3 nanoribbon FET biosensors. (c) Calibrated
response curves for serotonin from 350-nm- vs 20-μm-wide In2O3 nanoribbon FET biosensors. Error bars are standard errors of the means
for N = 3 350-nm-wide nanoribbon and N = 2 20-μm-wide nanoribbon devices. (d) Schematic illustration of DNA hybridization detection.
(e) Representative transfer curves for responses for complementary DNA hybridization (106 to 1015 copies) for 350-nm In2O3 nanoribbon
FET biosensors. (f) Calibrated responses for complementary DNA hybridization for 350-nm- vs 20-μm-wide In2O3 nanoribbon FET
biosensors. Error bars are standard errors of the means for N = 2 350-nm-wide nanoribbon and N = 3 20-μm-wide microribbon devices.
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diseases.5,6,76−79 Here, label-free DNA detection was per-
formed on micro- and nanoribbon FET biosensors. Thiolated
single-stranded DNA (ssDNA) was covalently immobilized
onto In2O3 (and SiO2). Solutions containing 10

6 to 1015 copies
of complementary oligonucleotide (∼1 fM to ∼1 μM) were
added to the sensing environment in artificial cerebrospinal
fluid (aCSF) (Figure 5d). The aCSF was diluted 10-fold to
increase the Debye length and thereby to maximize low copy-
number detection.
Representative transfer curves for 350-nm-wide In2O3

nanoribbon FETs at different target DNA copy numbers are
shown in Figure 5e. Calibrated responses are compared in
Figure 5f for the performance of 350-nm nanoribbon vs 20-μm
microribbon In2O3 FETs. Nanoribbons with 350 nm widths
showed higher sensitivity to DNA hybridization than that of
the 20-μm-wide microribbons (P < 0.05).
The direction of change for n-type In2O3 FET transfer

characteristics is due to gating effects associated with
negatively charged oligonucleotides.14,20 For aptamer-based
sensing, the serotonin aptamers used here reorient away from
FET surfaces upon target binding, resulting in increases in
concentration-related currents in i−V sweeps due to increased
transconductance.14 For DNA hybridization, decreases in
currents in the i−V sweeps with increasing DNA concen-
trations are due to the accumulation of net negative surface
charge, which occurs upon DNA hybridization.76 In a previous
study, we observed negligible sensor responses to non-
complementary target sequences.76 We differentiated sequen-
ces with single-base mismatches. The highly sensitive platform
developed here and in our recent work76 portends a reagentless
strategy for oligonucleotide (DNA, RNA) sensing, which can
be developed for the detection of a wide variety of infectious
agents, including the severe acute respiratory-related corona-
virus 2 (SARS-CoV-2).79,80

Relationships between FET sensitivity and surface-to-
volume ratio have been investigated using different types of
channel materials.32,36,49−55 Silicon nanowires with dimensions
≥50 nm have been most often investigated.36,50,54 Silicon
nanowires with higher surface-to-volume ratios have higher
sensitivities toward pH, protein, and DNA detection.36,50,54

For example, Linnros and colleagues studied silicon-on-
insulator (SOI) nanowires with widths of 50−170 nm
fabricated by electron-beam lithography having a 100-nm
semiconductor layer.54 For their smallest, 50-nm nanowires,
the surface-to-volume ratio was only 2/100 nm−1 (i.e., 0.4/20
nm−1), which is 60% less than the surface-to-volume ratio of
our 20-nm thin-film In2O3 FETs (i.e., 1/20 nm−1; see
Supporting Information for calculations and Table S2).
For bottom-up fabricated cylindrical nanowires, the surface-

to-volume ratio is related to 2/r, where r is the nanowire
radius. In principle, Si nanowires with diameters larger than
80 nm (i.e., surface-to-volume ratio 1/20 nm−1) have surface-
to-volume ratios lower than those in the microribbon,
nanoribbon, and thin-film FETs investigated here. For
instance, Sun and co-workers produced Si nanowire devices
for sensing protein adsorption.36 Fabrication involved nano-
wire contract printing and SEM to select and to remove
nanowires, individually producing devices with specific
numbers and diameters of nanowires. Single nanowire devices
were grouped by diameter ranges (i.e., 60−80, 81−100, and
101−120 nm). The smallest, 60-nm nanowires had surface-to-
volume ratios of 2/30 nm−1 (i.e., 1.3/20 nm−1)a 17%

increase over the surface-to-volume ratio of the 350-nm
nanoribbons investigated here (Table S2).
Williams and co-authors explored the effects of surface-to-

volume ratio in the context of ssDNA hybridization with
complementary single-stranded peptide nucleic acids function-
alized on Si nanowire FETs having widths of 50, 100, 200, 400,
and 800 nm.50 The Si semiconductor layer was 50 nm. For
these sensors, the signal-to-volume ratios were 3/50, 2/50,
1.5/50, 1.25/50, and 1.125/50 nm−1, respectively (i.e., 1.2/20,
0.8/20. 0.6/20, 0.5/20, and 0.45/20 nm−1, respectively).
Hybridization sensitivity was linear for nanowires with widths
between 800 and 100 nm. A sharp increase in sensitivity to
DNA hybridization for the 50-nm-wide Si nanowires was
attributed to nonlinear increases in conductance at small
nanowire diameters, which was determined experimentally and
via simulation.
For In2O3 nanoribbon FETs, sensor sensitivity can be

increased by reducing nanoribbon dimensions using In2O3
sol−gel processing to produce thinner semiconductor
layers26,27,56 and/or via CLL with masters fabricated by
e-beam lithography to pattern features as small as 15 nm.58−65

To extend our findings beyond the feature sizes investigated
experimentally, we performed finite element analysis simu-
lations to predict FET sensitivities with respect to a number of
different nanoribbon widths. As shown in Figure S8, increased
sensitivity was predicted for FETs with smaller widths given
the same In2O3 thickness (20 nm), which is attributed to
higher surface-to-volume ratios. Similar to the findings of
Williams and colleagues, we observed the greatest increases in
FET responses for features with widths <100 nm.50

Here, we focused on top-down approaches using soft
lithography. Traditional top-down approaches, such as e-beam
lithography (EBL), also offer precise control over the
orientations, sizes, and numbers of quasi-1D nanostructures,
thereby enabling fabrication of biosensors with high reprodu-
cibility.81 Nonetheless, top-down fabrication of sub-micro-
meter features needed to achieve high surface-to-volume ratios
requires techniques that are challenging to translate for broad
applications. For example, commonly used EBL methods are
low-throughput and suffer from high equipment and usage
costs.
Bottom-up approaches involving 1D nanomaterials (e.g., Si

nanowires, SiNWs) have also been used to fabricate FETs with
high surface-to-volume ratios, which increased device
sensitivities.82−84 However, fabrication of Si-based nanoma-
terials, including SiNWs, often relies on silicon-on-insulator
wafers, which are considerably more expensive (>$500 per
4 in. wafer) than standard Si wafers (<$50 per 4 in. wafer).85

Together, these drawbacks present significant barriers to the
use of many types of nanomaterials in actual biomedical
applications and necessitate the development of high-
throughput, cost-effective, and precise fabrication strategies
for biosensors, such as the method described herein.

CONCLUSIONS AND PROSPECTS
Highly aligned In2O3 nanoribbon FETs were fabricated by
chemical lift-off lithography using commercially available
DVD-R disks as nanostructured templates and low-temper-
ature sputtering to produce 20-nm In2O3 thin films. Nano-
ribbon FET sensors have high surface-to-volume ratios that
imparted greater sensitivity for ion, small-molecule, and
oligonucleotide detection, all other factors being equal. The
fabrication and sensing approaches reported herein represent
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generalizable strategies for improving electronic biosensing by
fabricating high surface-to-volume ratio nanoscale features for
applications where high and/or tunable sensitivities are critical.
This top-down, large-scale nanolithography strategy to

fabricate metal-oxide nanoribbons can be implemented as a
high-throughput, cost-effective, cleanroom-free means of
production. Even so, nanostructure surface-to-volume ratio is
only one of many parameters that impacts nanobiosensor
sensitivity. Other factors include semiconductor material,
doping, and nanowire/nanostructure densities. If surface
receptors are employed for selective biosensing, receptor
type (e.g., protein, nucleic acid), density, and target affinity, as
well as the ionic strength of the sensing environment and
biofouling will influence performance. Nonetheless, we
demonstrate unequivocally through experimentation and
simulation that surface-to-volume ratio impacts biosensor
responses under physiologically relevant conditions.

MATERIALS AND METHODS
Materials. Prime quality 4 in. Si wafers (P/B, 0.001−0.005 Ω-cm,

thickness 500 μm) were purchased from Silicon Valley Micro-
electronics, Inc. (Santa Clara, CA). Sylgard 184 silicone elastomer kits
(lot #0008823745) were purchased from Ellsworth Adhesives
(Germantown, WI). Indium(III) nitrate hydrate (99.999%), iron
nitrate, thiourea, ammonium hydroxide (30% w/v in H2O), hydrogen
peroxide (30% v/v in H2O), ethylenediaminetetraacetic acid
disodium salt dihydrate (EDTA), 3-phosphonopropioninc acid, (3-
aminopropyl)triethoxysilane (APTES), trimethoxy(propyl)silane, and
3-maleimidobenzoic acid N-hydroxysuccinimide (MBS) were pur-
chased from Sigma-Aldrich (St. Louis, MO) and used as received.
UltraPure nuclease-free distilled water was purchased from Thermo
Fisher Scientific (Waltham, MA) and used as received. The masters
templated for lift-off lithography were commercially available DVD-R
recordable 16× speed 4.7 GB blank disks (Memorex).
Water was deionized before use (18.2 MΩ-cm) using a Milli-Q

system (Millipore, Billerica, MA). The serotonin aptamer (/5Thi-
oMC6-D/CG ACT GGT AGG CAG ATA GGG GAA GCT GAT
TCG ATG CGT GGG TCG), thiolated ssDNA (/5ThioMC6-D/GG
TTC TTG GAT ATA G), and complementary ssDNA (CTA TAT
CCA AGA ACC) were synthesized by Integrated DNA Technologies,
Inc. (Coralville, IA). The Ag/AgCl reference electrodes were
purchased from World Precision Instruments, Inc. (Sarasota, FL).
Buffer Solutions. Phosphate-buffered saline solution was

purchased from Thermo Fisher Scientific (Waltham, MA,
#10010023) and used as received. Artificial cerebrospinal fluid
solution was NaCl (14.7 mM), KCl (0.35 mM), CaCl2 (0.1 mM),
NaH2PO4 (0.1 mM), NaHCO3 (0.25 mM), and MgCl2 (0.12 mM). A
detailed procedure for preparation appears in the Supporting
Information.
Fabrication of Masters. Photomasks for 2 μm wide and 4 μm

pitch lines or 20 μm wide and 40 μm pitch lines were designed using
the AutoCAD software suite (Autodesk, Inc.). Positive photoresist
SPR700-1.2 (Rohm & Haas Co., Philadelphia, PA) was used for
patterning Si by photolithography. The exposed Si was selectively
etched using deep reactive ion etching (Plasma-Therm, LLC,
Petersburg, FL). The resulting masters were then coated with
trichloro(1H,1H,2H,2H-perfluorooctyl)silane as a release layer. The
DVD-R masters for 350 nm wide nanoribbons were prepared by a
separation and rinsing process as previously described.56,57

Fabrication of In2O3 Micro- and Nanoribbon FETs. The
general fabrication process is illustrated in Figure 1. The Si substrates
with 100 nm SiO2 were coated with 30 nm Ti followed by 30 nm Au
using a CHA solution electron-beam evaporator (CHA Industries,
Inc., Fremont, CA) under high vacuum (10−8 Torr) at an evaporation
rate of 0.1 nm/s. Preparation of h-PDMS stamps, CLL patterning, and
wet etching processes for nanoribbon fabrication were carried out as
previously reported.56,57 Briefly, an ethanolic 1 mM solution of 11-
mercapto-1-undecanol was used to form SAMs on Au surfaces by

incubation with substrates for 12 h. Oxygen-plasma-activated DVD-
templated h-PDMS stamps were brought into contact with SAMs.
The soft PDMS stamps for CLL patterning of 2- and 20-μm ribbons
were made from Si masters fabricated by conventional photo-
lithography, as described above. The CLL was carried out similar to
patterning for 350-nm nanoribbons.

For all formats, upon stamp removal, SAM molecules in the stamp-
contacted areas were selectively removed, along with monolayers of
Au atoms.58,64 After the CLL process, Au etchant composed of
20 mM iron nitrate and 30 mM thiourea was used to etch the Au films
(∼30 min). A Ti etchant (113 mM EDTA, 3% hydrogen peroxide (v/
v in H2O) and 1.26% ammonia hydroxide solution (w/v in H2O))
was used to etch to Ti for ∼9 min. Wet etching transferred the
patterns through the metal layers. After wet etching, substrates were
oxygen-plasma-treated to remove remaining SAM molecules in the
noncontact areas prior to In2O3 sputtering.

The In2O3 (∼20 nm) was deposited onto the patterned substrates
using a radio frequency sputtering process (Denton Discovery 550
Sputtering System, Nanoelectronics Research Facility (NRF),
University of California, Los Angeles (UCLA)). Sputtering is a
room temperature process, which is compatible with a variety of
substrates including Si, glass, polyesters, and polyimide.30,46,47 Metal
removal was then performed by immersing substrates into Ti etchant
for ∼9 min under ultrasonication (Branson Ultrasonics, Danbury,
CT), leaving In2O3 micro- or nanoribbons on Si/SiO2 substrates.
Devices were cleaned with water and dried under N2 before
measurements or further functionalization. Source/drain electrodes
of 10-nm-thick Ti and 50-nm-thick Au were defined by conventional
photolithography and deposited using a solution electron-beam
evaporator (CHA Industries, Inc., Fremont, CA) under high vacuum
(10−8 Torr) with an evaporation rate of 0.1 nm/s. An optical
microscope image of the electrode configuration with respect to In2O3
nanoribbons is shown in Figure S2.

Characterization. Scanning electron microscope images were
obtained using a Supra 40VP scanning electron microscope with an
Inlens SE Detector (Carl Zeiss Microscopy, LLC, White Plains, NY).
Atomic force microscope imaging was performed using a FastScan
AFM with ScanAsyst-Air tips (Bruker, Billerica, MA). Electronic FET
measurements were carried out on a manual analytical probe station
(Signatone, Gilroy, CA) equipped with a Keithley 4200A SCS
(Tektronix, Beaverton, OR) or an Agilent 4156B semiconductor
parameter analyzer (Santa Clara, CA). Optical images were taken with
a digital camera attached to a Zeiss Axiotech optical microscope.

Biosensing. For pH sensing, In2O3 surfaces were functionalized
with APTES. Real-time source−drain current measurements were
performed (i−t), where the gate voltage (VGS) was held at 300 mV
and the drain voltage (VD) was held at 100 mV throughout. Buffer
solutions of pH 7.4 were used to obtain stable baselines. Buffer
solutions from pH 10 to 5 were sequentially added and removed using
pipettes.

Thiolated serotonin aptamer or thiolated ssDNA (1 μM in
nuclease-free water) were immobilized onto the oxide surfaces of
FETs using APTES/PTMS (1:9, v/v) and MBS ester a as linker.
Serotonin (final concentration 10 fM to 100 μM) or complementary
ssDNA (final concentration 1 fM to 1 μM) in 1 μL aliquots were
added into the buffer solutions (39 μL) over FETs and mixed with a
pipet.

Source−drain current (IDS) transfer curves were obtained, wherein
gate voltages (VGS) were applied from −200 to 400 mV with a step
voltage of 5 mV, while the drain voltage (VD) was held at 10 mV
throughout. Five gate-voltage sweeps were repeated (five sweeps at 0,
5, and 10 min). The sweeps at each time point were averaged to
determine each transfer curve. Calibrated responses were calculated
by dividing the absolute sensor response (ΔI), which takes into
account baseline subtraction, by the change in source−drain current
with voltage sweep (ΔIDS/ΔVG).

14

Statistics. Data for pH, serotonin, and ssDNA sensing were
analyzed by two-way analysis of variance with ribbon width and target
concentration as the independent variables (GraphPad Prism 7.04,
San Diego, CA). Data for 10 nM, 100 nM, and 1 μM serotonin were
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excluded from the statistical analysis because sensor responses were
saturated (Figure 5c). Two data points from the 20-μm-wide
nanoribbon DNA sensing data were excluded from plotting and
analysis due to external disturbance of the Ag/AgCl reference
electrode noted during the measurements (Figure 5f).
Simulations. The COMSOL Multiphysics 5.2 program was used

to simulate the relative responses of nanoribbons having different
widths. Details for the model are from Shoorideh and Chui.86 Here,
In2O3 nanoribbons were designated to be 2 μm long and 20 nm thick,
with widths varying from 5 nm to 20 μm. The In2O3 is intrinsically
doped by oxygen vacancies at an estimated concentration of 2.5 ×
1016 cm−3 n-type doping.30 The substrate was 200-nm silicon dioxide.
A surface charge density of 1.6 × 10−3 C/m−2 was added to model
aptamer-induced charge change on the channels and the SiO2 surface.
Semiconductor physics was applied to compute the source−drain
electric current when sweeping the gate voltage. The sensitivity was
then calculated based on previous work.14
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