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ABSTRACT: This paper presents aligned carbon nanotube
(CNT) synaptic transistors for large-scale neuromorphic
computing systems. The synaptic behavior of these devices
is achieved via charge-trapping effects, commonly observed
in carbon-based nanoelectronics. In this work, charge
trapping in the high-k dielectric layer of top-gated CNT
field-effect transistors (FETs) enables the gradual analog
programmability of the CNT channel conductance with a
large dynamic range (i.e., large on/off ratio). Aligned CNT
synaptic devices present significant improvements over
conventional memristor technologies (e.g., RRAM), which
suffer from abrupt transitions in the conductance
modulation and/or a small dynamic range. Here, we demonstrate exceptional uniformity of aligned CNT FET synaptic
behavior, as well as significant robustness and nonvolatility via pulsed experiments, establishing their suitability for neural
network implementations. Additionally, this technology is based on a wafer-level technique for constructing highly
aligned arrays of CNTs with high semiconducting purity and is fully CMOS compatible, ensuring the practicality of large-
scale CNT+CMOS neuromorphic systems. We also demonstrate fine-tunability of the aligned CNT synaptic behavior and
discuss its application to adaptive online learning schemes and to homeostatic regulation of artificial neuron firing rates.
We simulate the implementation of unsupervised learning for pattern recognition using a spike-timing-dependent-
plasticity scheme, indicate system-level performance (as indicated by the recognition accuracy), and demonstrate
improvements in the learning rate resulting from tuning the synaptic characteristics of aligned CNT devices.
KEYWORDS: carbon nanotube, synapse, transistor, neuromorphic, machine learning

The approaching fundamental limits for process scaling
of complementary metal-oxide-semiconductor
(CMOS) technology have led to significant material

and device research aimed at developing a more efficient and
better performing replacement for MOS field-effect-transistors
(MOSFETs).1−4 Low-dimensional (e.g., 2-D and 1-D)
materials such as graphene and carbon nanotubes (CNTs)
are promising candidates with excellent scalability and
desirable electronic transport properties under low-voltage
operation.5−9 Moreover, recent developments in the function-
ality of CNT devices,10−13 as well as their compatibility with
three-dimensional (3-D) integration,14,15 may enable the
implementation of non-von-Neumann architectures that
eliminate the separation of memory and logic, thus reducing
power consumption and heat generation resulting from
expensive data transferring (i.e., the von-Neumann “bottle-
neck”).16,17 The time- and power-efficient computing benefits

of these architectures are especially beneficial for low-power
mobile electronic systems. Moreover, the increasing deploy-
ment of mobile, data-gathering devices for the Internet of
Things (IoT) presents a significant need for efficient and high-
throughput data preprocessing at the edge of the network (i.e.,
edge computing).18,19

Neuromorphic architectures, inspired by the human brain,
emulate the structure and functionality of biological neural
systems and can enable the realization of highly efficient
computing systems.20,21 By utilizing the synaptic properties of
resistive switching (i.e., memristive) devices, artificial neural
networks can be fabricated in a crossbar configuration offering
the desired density, parallelism, and 3-D integration compat-
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ibility desired for the efficient hardware implementation of
machine learning algorithms and neuro-inspired computing
architectures.22−24 This approach has been used to demon-
strate tasks such as recognition, classification, learning, and
decision making.18,25−28

The most widely studied memristive device for the hardware
implementation of artificial neural networks in a crossbar
configuration is the filamentary type (e.g., RRAM).29−33 This
technology offers great features including a simple two-
terminal structure, low-power operation, and good endurance
and retention.33 However, it suffers from significant device-to-
device and cycle-to-cycle variability,34 as well as from
abruptness of resistance modulation,35−38 due to the inherent
filamentary operation.39 This abruptness is undesirable for
neuromorphic systems40 and can be eliminated from the
characterization of RRAM synaptic behavior through the
application of a forming step (i.e., initial generation of the
conductive filament). Nonetheless, the dynamic range (i.e.,
resistance modulation range) after the formation of the
conductive filament is limited, as further changes in resistance
result only from modulation of the filament cross-sectional
area.41 Moreover, the requirement of a forming step and the
significant variation of the forming/set voltage42,43 introduce
additional system-level complexity (and associated cost),
unwanted for the efficient hardware implementation of
artificial neural networks. Because of these limitations, synaptic
devices with alternative resistive switching mechanisms are
desirable. Recently, charge-trapping synaptic transistors have
been proposed as an alternative for the hardware implementa-
tion of artificial neural networks. Devices with Si44 as well as
random network CNT channels11,12 have been demonstrated
with promising preliminary results. It is well established that
CNT-based devices have exceptional scaling properties that
extend beyond the Si roadmap8 and are considered a primary
candidate for next-generation computing systems that vertically
integrate logic and memory.15,45 Importantly, achieving
superior device uniformity and stability requires controlled

placement of CNTs (i.e., alignment) as well as controlled
semiconducting purity.46 In this work, we present a wafer-scale
aligned CNT synaptic transistor technology for large-scale
neuromorphic systems. An advantage of CNTs for the
development of charge-trapping synaptic transistors is their
large sensitivity to charged defect scattering. Because of their
small physical dimensions, CNT conductivity can change
significantly as a result of changes in the charge state of nearby
defects.47,48 As we will show, the sensitivity of individual CNTs
translates into measurable changes of CNT FET conductance,
especially for FETs with aligned CNTs where transport and
scattering effects are isolated to 1-D,49 resulting in a robust
synaptic behavior with large dynamic range. We present a
thorough analysis of the robust synaptic behavior in aligned
CNT transistors based on DC and pulsed electrical character-
ization. We discuss the implementation of aligned CNT-based
artificial neural networks and present system-level simulations
of unsupervised learning for pattern recognition applications.
Additionally, we demonstrate the synaptic tuning capability of
an aligned CNT FET and discuss its application to adaptive
learning schemes for artificial neural networks and/or to
implement homeostatic regulation of neuron firing rates.

RESULTS AND DISCUSSION
Aligned CNT Synaptic Transistors. Single-walled carbon

nanotubes (SWCNTs) and SWCNT FETs have exceptional 1-
D electronic transport properties, making them an excellent
candidate for various applications including high-speed logic
devices,50 radio frequency (RF) transistors,51 and nonvolatile
memory.52 However, for most of these applications, the
organized assembly (i.e., alignment) of SWCNTs with
controlled semiconducting purity is critical for optimizing
device performance and for developing practical, reliable, and
scalable technologies.46,53−55 In this work, a recently improved
evaporation-driven process, named floating evaporative self-
assembly (FESA),56,57 has been utilized by Carbonics Inc. to
fabricate highly aligned SWCNT devices at the wafer level

Figure 1. (a) Aligned CNT FET wafer fabricated by Carbonics. (b) Top-gated aligned CNT FET test structures (inset is the zoomed-in view
of the channel region from a 10-finger device; each channel “finger” is 20 μm wide). (c) Scanning electron microscope (SEM) image of the
aligned CNT FET active region. (d) SEM of the aligned CNT channel. (e) Cross-sectional schematic of the aligned CNT FET. (f) Top view
of the aligned CNT FET including t-shaped top-gate and self-aligned source/drain regions. (g) Conceptual back-end-of-line (BEOL)
integration of aligned CNT FETs for artificial neural network implementation in crossbar configuration.
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(Figure 1a). Figure 1b is the optical image of a multifingered
top-gated aligned CNT FET. The scanning electron micro-
scope (SEM) images of a gate region and of the aligned
SWCNTs are respectively shown in Figure 1c and d. A
schematic of the self-aligned T-gate transistor structure is
illustrated in Figure 1e, and the SEM image of the finalized
device including self-aligned source/drain regions is shown in
Figure 1f. The T-gate structure is characteristic of RF
application that these devices were initially designed for. It
enhances gate control, helps scaling down the channel length,
and reduces parasitic capacitance.58 Thus, it can enhance the
dynamic behavior of gate-bias-dependent charge-trapping
mechanisms and improve the performance of aligned CNT
synaptic transistors, enabling faster operation.
This wafer-level process is fully compatible with CMOS,

owing to the low-temperature fabrication of aligned CNT
devices. Thus, it is feasible to achieve 3-D integration of
aligned CNT devices and CMOS circuits to enable non-von-
Neumann architectures, such as neuromorphic topologies, that
conquer the communication bottleneck between memory and
logic. Figure 1g illustrates the conceptual back-end-of-line
(BEOL) 3-D integration of aligned CNT and CMOS for
neuromorphic computing systems. In this architecture, aligned
CNT FETs are connected in a crossbar configuration and
operate as the synaptic elements of an artificial neural network,
and neural circuits are implemented with CMOS. We first
present the electrical characteristics of the aligned CNT FETs,
followed by the demonstration and analysis of their synaptic
properties. Later, we describe the aligned CNT-based neuro-
morphic crossbar configuration as well as the implementation
and performance of artificial spiking neural networks for
pattern recognition based on unsupervised learning.

Figure 2a plots the drain current (Id) as a function of the
gate-to-source voltage (Vgs) for a drain bias (Vd) of −1.0 V and
−50 mV from a CNT FET with a channel width to length ratio
of W/L ≈ 60 μm/1 μm. These data are from a six-finger top-
gated CNT FET with 20 μm channel width per finger (only
measured three of the six channels divided between two drain
electrodes for a total of 60 μm). P-type operation in the CNT
FET is indicated by the exponentially increasing (negative)
current with increasing −Vgs, resulting from hole conduction in
the valence band of the CNTs. The dual sweeps in Figure 2a
also indicate large counterclockwise gate hysteresis attributed
to a dynamic screening of the electric field due to charge
injection/emission (i.e., trapping/detrapping) near and/or at
the interface between the CNTs and the 4.6 nm thick HfO2
gate dielectric. Figure 2b plots the dual-sweep transfer
characteristics with Vd = −0.05 V, measured with increasing
gate sweep range from ±0.5 to ±2.0 V. Increasing the gate
sweep range allows accessing a wider range of energetically
distributed traps and enhances the field-driven tunneling
mechanisms that allow charge trapping/detrapping.59 As
discussed below, this voltage control of trap occupancy allows
gradually modulating charge-induced electrostatic and scatter-
ing effects, resulting in a robust synaptic device operation. For
completion, in Figure 2c we plot the family of Id−Vds curves
obtained with increasing Vgs from 0 V to −1.0 V in steps of
−0.5 V.
We plot multiple cycles of dual-sweep Id−Vgs measurements

from three different devices in Figure 2d, to demonstrate the
repeatability of the charge-trapping effects and their impact on
the hysteresis and electrical characteristics of the CNT FETs.
Having a sufficiently large on/off ratio is important for
achieving synaptic operation with a large dynamic range (i.e., a
large range of conductance modulation). We experimentally

Figure 2. (a) Dual-sweep Id−Vgs characteristics of aligned CNT FETs for Vds = −1.0 and −0.05 V revealing large gate hysteresis. (b)
Dependence of hysteresis window on the voltage sweep range of dual-sweep Id−Vgs measurements. (c) Id−Vds characteristics for increasing
Vgs. (d) Multiple cycles of dual-sweep Id−Vgs indicating repeatability of hysteresis effects. (e) Distribution of hysteresis plotted as a function
of the on/off ratio. (f) Energy band diagram illustrating charge-trapping effects in aligned CNT FETs.
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verify that the aligned top-gate CNT FETs can simultaneously
provide a sufficiently large on/off ratio (e.g., >10) and
hysteresis window (e.g., >0.4 V) by extracting these parameters
from a large set of 691 measured devices. In Figure 2e we plot
the distribution, and it concentrates around an on/off ratio of
∼40 and a hysteresis window of ∼0.9 V, with a long tail
spreading to larger on/off ratios. The tightness of the hysteresis
window distribution is a good indicator of uniformity in the
charge-trapping dynamics. In short-channel CNT FETs,
electronic transport is quasi-ballistic (near-ballistic).60 This
also helps achieve a robust synaptic behavior and large
dynamic range, as it enhances the sensitivity of CNT FET
conductance to charged defects near the channel. When
carriers can travel without being scattered by other channel
impurities, Coulomb scattering induced by changes in the
charge state of nearby defects can have a large impact on
conductance.47

In Figure 2f, the energy band diagram across the gate/HfO2/
CNT regions of the device illustrates the trapping mechanisms
responsible for hysteresis and for the synaptic behavior of the
aligned CNT transistors. With a negative bias applied at the
gate, the energy level of near-interfacial traps in the HfO2
dielectric layer will be shifted upward (due to band bending),
and a fraction of them that were initially located below the
Fermi level in the CNT channel (EF) will now be located
above EF. These traps will gradually change their occupancy,
since at this biasing condition there is a large hole population
in the CNT channel that can occupy the energy levels ET (i.e.,
hole trapping), resulting in a net positive change in the charge
contribution due to traps. Similarly, when the gate bias is
positive, the bands bend in the opposite direction, resulting in
a net negative change in the trap charge contribution. We note
that the trap energy distribution (relative to EF) depends on
bias (i.e., due to band bending) as well as position. Traps
located further away from the interface see a larger shift in their
energy level as a function of bias, but are also less likely to have
a chance in their occupancy, as the tunneling probability of

carriers from the CNT channel decreases exponentially with
distance from the interface.59 Thus, only a fraction of near-
interfacial traps having energy levels centered around EF, will
dynamically change their charged state as a function of bias,
and affect the electrostatic and transport properties of the
device. In CNT FETs, traps along the surface of the dielectric
but not directly in contact with the CNT (i.e., surface traps)
may also contribute to charging effects.61 The trap charge state
transitions are not instantaneous and can have long-term
effects that result in gate hysteresis and memory effects that are
responsible for the synaptic behavior of the aligned CNT
FETs.

Synaptic Properties of Aligned CNT FETs. The synaptic
properties of the aligned CNT FETs are experimentally
analyzed using pulsed electrical measurements. As illustrated in
Figure 3a, the source terminal of the aligned CNT FETs is
connected to a ground reference, while a series of gate-to-
source (Vgs) and drain-to-source (Vds) voltage pulses are
applied to the device under test during the experiment. To
characterize synaptic potentiation, a short positive Vgs pulse
with amplitude Vpot and width tw is applied as indicated in
Figure 3b. Following the application of the Vgs = Vpot pulse, a
small bias of Vdsm is applied between drain and source to
measure Id (at Vgs = 0 V), and the process is repeated for a
specified number of potentiating pulses. Similarly, synaptic
depression is characterized by applying a short negative gate-to-
source voltage pulse with amplitude Vdep and width tw,
followed by a small Vdsm bias to measure Id.
In Figure 3c we plot the synaptic characteristics of an aligned

CNT FET measured with 20 potentiating and 20 depressing
voltage pulses having amplitudes Vpot = 2 V and Vdep = −1.4 V,
respectively, and tw = 10 μs. For the measurements of Id, Vdsm =
−1.0 V was applied for ∼0.1 s. The same device is measured 10
times (gray solid lines), and the mean is extracted (solid blue
line with circles). The results in Figure 3c reveal good
repeatability of the synaptic characteristics, a large dynamic
range evident by >1 order of magnitude modulation of Id, and

Figure 3. (a) Biasing configuration for pulsed measurements of synaptic properties of aligned CNT FETs. (b) Diagram of the pulsed
measurements for long-term potentiation and long-term depression. (c) Measured synaptic characteristics of an aligned CNT FET. (d, e)
Tuning the synaptic properties of aligned CNT FETs with adjustment of the potentiating/depressing voltage pulse amplitudes. (f) Reduced
pulse amplitude improves linearity and stability of the synaptic response with a slight reduction in dynamic range.
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good analog programmability (i.e., fine synaptic resolution).
We note that each potentiating and depressing pulse is of the
same amplitude and width, since previous works have used
pulse trains with incremental amplitudes and/or widths to
improve the synaptic response.62,63 However, it is not clear
how these incremental pre/post-synaptic pulse features can be
practically implemented in neuromorphic systems. Compared
to these previous works, which are mostly based on filamentary
resistive-switching devices (e.g., RRAM), the aligned CNT
devices have improved synaptic properties due to the inherent
charge-trapping mechanisms responsible for conductance
modulation. Filamentary devices generally exhibit an abrupt
transition in conductance through a “forming step”, during
which the creation of the conductive filament is initiated.
Following the creation of the conductive filamentary path, only
small changes in conductance attributed to the widening of the
filament are typically achieved, resulting in a limited dynamic
range. In recent work,11 it was determined that conductance
modulation of ∼100% in random network CNT FETs enables
better performing neuromorphic system operation, compared
to conventional memristors, which typically achieve <30%.
Also, that CNT devices with higher semiconducting purity and
isolated nanotubes may provide improvements in synaptic
performance. Here, we demonstrate that in aligned CNT
FETs, where transport is isolated to individual nanotubes with
high semiconducting purity, we can achieve >1 order of
magnitude conductance modulation, providing significant
improvement over random network CNT FETs.
Charge trapping in aligned CNT FETs not only eliminates

the need for a forming step but also enables gradual changes in
the conductance, resulting in a robust and stable synaptic
response. However, in some cases we can still observe a sharp

transition after the first depressing pulse (e.g., Figure 3c). In
order to eliminate this abruptness, we explore tuning of the
synaptic characteristics through adjustment of the pulse
amplitudes. In Figure 3d, we show independent tuning of
synaptic depression based on measurements with a fixed Vpot =
2 V and Vdep = −2.0, − 1.3, and −1.0 V (same device). We
note that adjusting only Vdep results in asymmetric synaptic
characteristics. It is not yet clear how this asymmetry may
affect the implementation of specific neuromorphic systems or
machine learning algorithms. Nevertheless, it is possible to
avoid the asymmetry by simultaneously adjusting Vpot and Vdep,
with a slight trade-off in dynamic range as shown in Figure 3e.
Figure 3f shows the synaptic characteristics from 10 repeated
measurements (gray lines) of the same device using Vpot = 1.4
V and Vdep = −1.4 V as well as the mean (solid blue line with
circles). The results in Figure 3f reveal better linearity (less
abruptness) in conductance modulation while maintaining a
large (∼1 order of magnitude) dynamic range.
To further explore the endurance, robustness, and tuning of

the synaptic properties of aligned CNT FETs, we tested a large
number of potentiation/depression cycles in a single device. In
Figure 4a (top) we plot Id measurements from 1000
consecutive synaptic characterization cycles using Vpot = 1.6
V, Vdep = −1.6 V, tw = 2 μs, and Vdsm = −50 mV. From each
cycle we extract Id after 0, 2, 4, and 16 potentiating pulses and
plot them as a function of the cycle number (bottom). The
results in Figure 4a illustrate the endurance and robustness of
the charge-trapping-based synaptic behavior of aligned CNT
FETs. For the same device, we repeat the measurement of
1000 consecutive cycles with Vpot = 1.4, 1.2, and 1.0 V, using
Vdep = −1.6 V for all cases, as plotted in Figure 4b,c,d (top).
Similarly, we plot the extractions of Id after 0, 2, 4, and 16

Figure 4. (a−d) Multiple cycles of synaptic properties characterized with repeated (1000) pulsed measurements. Each graph is for a different
amplitude of the potentiating voltage pulse ranging from Vpot = 1.6 to 1.0 V. Top: Id vs pulse number for all 1000 cycles; bottom: extraction
of Id at four different levels (i.e., after four different number of pulses) vs cycle number. (e) Retention test showing samples of the
programmed Id as a function of time immediately following the pulsed programming. (f) Collection of all data from (a)−(d) and model
calculations indicating the impact of Vpot on the abruptness and dynamic range of the aligned CNT FET conductance modulation.
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potentiating pulses for all cases, respectively plotted as a
function of the cycle number in Figure 4b,c,d (bottom). These
results verify the stability and robustness of the synaptic
performance of aligned CNT FETs, as well as the precise
tuning capability based on adjusting the potentiating voltage
pulse amplitude.
We also verify the long-term retention of synaptic weights in

aligned CNT FETs through the time-dependent sampling of Id
following the programming of various states (i.e., after various
numbers of potentiating/depressing pulses). Figure 4e plots Id
vs time over approximately 4 decades of time (up to 1 ks),
indicating only a small loss of the extreme states that
correspond to the largest/smallest programmed channel
conductance. However, in many neuromorphic computing
applications and machine learning algorithm implementations,
synaptic weight updating may occur at much faster rates
compared to the time scale over which we measure this slight
degradation in retention. Moreover, even with this reduction to
the window of allowed programmed states, the dynamic range
is still sufficiently large (∼3×) to enable adequate synaptic
weight analog programmability with high resolution. None-
theless, we expect that this issue may be easily resolved with
engineering of the high-k dielectric trapping layer and/or
introduction of alternative layers with better trapping
characteristics.
Finally, in Figure 4f we show a combined plot with all 1000

cycles from each case of Vpot (i.e., 1.6, 1.4, 1.2, 1.0 V), to better
illustrate the repeatability of the measurements and to clearly
indicate the impact Vpot on the synaptic response. As shown, a
higher Vpot results in a larger dynamic range, but also increases
the abruptness of the pulse-induced conductance modulation
(i.e., conductance is changed more with each pulse). In Figure

4f the color-coded solid lines are experimental data and the
solid black lines with circles are calculations based on a
recursive model for the aligned CNT FET synaptic character-
istics. In the following section we provide more details on the
model and describe the impact of conductance modulation
abruptness and dynamic range on the unsupervised learning
pattern recognition function of spiking neural networks.

Unsupervised Learning with Aligned CNT+CMOS
Neuromorphic Systems. Synaptic devices such as the
charge-trapping aligned CNT FETs are of great interest for
the hardware implementation of large-scale neural networks for
neuromorphic computing systems. A popular demonstration of
the type of functions that can be efficiently implemented on
neuromorphic systems is that of pattern recognition based on
unsupervised learning in artificial spiking neural networks.
Here, we present simulations of pattern recognition using the
MNIST handwritten digit data set based on a simplified spike-
timing-dependent plasticity scheme modeled on large arrays of
aligned CNT synaptic transistors.64 We utilize an experimen-
tally verified model of the synaptic characteristics of aligned
CNT FETs and investigate the impact of the conductance
modulation abruptness and dynamic range on recognition rate
and on the learning dynamics of the network.
The implementation is illustrated in Figure 5a: The data set

consists of 60 000 training images and 10 000 test images. The
training images are presented to the network as input voltage
pulses which are applied at the rows of the implemented
crossbar array architecture. Here, the input vector represents
the intensity of all 28 × 28 pixels from the training image,
translated into voltage pulses having a width directly
proportional to the intensity of the corresponding pixel. At
each cross point of the array, the gate of an aligned CNT

Figure 5. (a) Diagram illustrating the implementation of unsupervised learning for pattern recognition in a spiking neural network with
aligned CNT synaptic devices. (b) Simulated time-dependent current in the postsynaptic (output) neurons. (c) Characteristics of output
neuron potentials as simulated by an integrate and fire function, indicating the firing of the postsynaptic neuron spike as well as lateral
inhibition. (d) Experimental data and model calculations of aligned CNT FET synaptic response used in the simulations of MNIST data set
pattern recognition. (e) Recognition rate as a function of training number for arrays with increasing number of output neurons. (f)
Recognition rate after 60 000 training cycles as a function of the number of output neurons. (g) Conductance map of 20 output neurons
after training.
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synaptic transistor is connected to the input row (presynaptic
neuron), and the source is connected to the output column
(postsynaptic neuron). The drain is biased to a small negative
voltage with respect to the source, to enable current flow in the
channel of the aligned CNT FETs. The sum of the currents
flowing through all of the synaptic devices connected to each
column is summed at the postsynaptic neurons. Mathemati-
cally, the current in column j can be expressed using
Kirchhoff’s current law as = ∑I t x t G( ) ( )j i i ij, where xi(t) and
Gij are the input voltage pulse and the conductance of the
aligned CNT FET from row i. Figure 5b illustrates the output
currents from an array with 10 output neurons during the 100
ms that a training image is presented to the network. In the
spiking neural network implementation, Gij is updated based
on a simplified spike-timing-dependent plasticity (STDP)
scheme.65 In this STDP scheme, a leaky integrate and fire
operation is executed at each output to obtain the neuron
potential expressed as Xj(t)/dt − Xj(t)/τ = Ij(t)/τ. When any
of the output neuron potentials exceeds a specified threshold
(Xth), a postsynaptic spike is triggered, firing the application of
voltage pulse at the corresponding column and resetting all
Xj(t) to zero. Figure 5c plots Xj(t) corresponding to Ij(t) in
Figure 5b, illustrating the triggering of the postsynaptic voltage
pulse from the output neuron that first reaches Xth (neuron 2
in this case). Also indicated in Figure 5c is the implementation
of lateral inhibition that consists of holding Xj(t) at zero for
neurons other than the one that has last fired for a short period
of time (10 ms in this case), to prevent a different neuron from
firing in response to the same stimulus (i.e., a winner-takes-all
approach).
The firing of the postsynaptic spike delivers a Vgs voltage

pulse across the aligned CNT FETs connected to the
postsynaptic neuron that has fired, resulting in a charge-
trapping-induced update of their channel conductance. This
change in the conductance (ΔG) is positive or negative
depending on the relative timing of the pre- and postsynaptic
spikes. In this implementation, synaptic potentiation (i.e.,
positive ΔG) occurs for all aligned CNT FETs that have an
input pulse width (tin) that exceeds the triggering of the
postsynaptic spike (tout), and depression occurs for devices
with tin < tout. In other words, devices that have an input
voltage during the arrival of the output spike will have a small
increase in their conductance, and devices without an input
voltage during the arrival of the output spike will have a small
decrease in their conductance. We note that other
implementations aimed at realizing a biologically plausible
STDP scheme attempt to achieve a ΔG that is proportional to
Δt = tin − tout. Instead, we adopt a simplified scheme for
practical hardware implementation where ΔG is dependent
only on the sign of Δt and can be realized with CMOS IC
processes, using only square pre- and postsynaptic voltage
pulses. Figure 5d shows experimental data and model
calculations for ΔG resulting from consecutive potentiating
and depressing Vgs voltage pulses applied to an aligned CNT
synaptic transistor. Calculations are from a recursive model
required for spiking neural network simulations where updates
in conductance are obtained as

Δ =G R Gpotentiation: pt( )pt
pte

(1a)

Δ =G R Gdepression: dp( )dp
dpe

(1b)

where

= − −R G G G G( )/( )pt max max min (2a)

= − −R G G G G( )/( )dp min max min (2b)

In eqs 1 and 2, pt, pte, and Rpt are obtained from fitting the
synaptic potentiation characteristics, and dp, dpe, and Rdp are
obtained from fitting the synaptic depression characteristics.
Rpt and Rdp are associated with the rates at which the
conductance is increased/decreased, given the current state of
the device as determined by the difference between the
conductance and the max/min values. This modeling approach
can be used to explore the effects of the synaptic device
characteristics on the neuromorphic system-level performance
(e.g., in this case recognition rate). The recursive model is
similar to those used in previous modeling work,11,65 but is
formulated for easier interpretation and to better bound
conductance to the specified Gmin and Gmax, resulting in
improved simulation stability.
In Figure 5e, we present the results of the pattern

recognition simulations using the experimentally verified
model of the aligned CNT synaptic transistors. The results
show the recognition rate as a function of the training number
for arrays with 10, 20, 40, and 80 output neurons. Each case is
simulated five times, and we plot the mean value including
error bars for one standard deviation. For each simulation we
present a fraction of the training set images and then perform a
recognition test using all 10 000 test images. During the test we
keep track of spiking activity and determine the recognition
rate a posteriori by assigning each neuron to the digit for which
it spiked the most and calculating the ratio of occurrences that
the assigned neuron spiked compared to the total number of
spikes for a given digit. The results presented in Figure 5e are
the average of all digits. Clearly, the recognition rate improves
with training and also improves with increasing number of
output neurons, as these provide specialization to different
styles of handwriting for the same digits, resulting in improved
accuracy of the algorithm. Figure 5f plots the recognition rate
as a function of the number of output neurons after 60 000
training steps. In Figure 5g, we plot conductance maps for the
case of 20 output neurons, which correspond to the
conductance of all of the aligned CNT FETs connected to
each column in the network (again after all 60 000 training
steps).
In Figure 4f we present experimental data and model

calculations demonstrating the impact of the amplitude of the
potentiating voltage pulses (Vpot) on the synaptic character-
istics of aligned CNT FETs. We showed that increasing Vpot
resulted in a larger dynamic range, but also increased the
abruptness of the conductance modulation. In Figure 6 we now
show simulation results from the unsupervised learning pattern
recognition using model fits to experimental data from aligned
CNT synaptic transistors with increasing Vpot. We calculate the
improvement (Δ) in recognition rate as a function of training
number for the case of Vpot = 1.0 and 1.6 V and also
extrapolate the model to the case of Vpot = 2.0 V. The results in
Figure 6 show that the increased dynamic range and
abruptness in modulation that results from increasing Vpot
enhances the initial learning rate of the network (i.e., larger
slope during the initial training steps). This enhancement can
provide a better recognition rate with a smaller number of
training steps (e.g., in the case of Vpot = 1.6 V). However, the
detrimental effects of an excessively abrupt conductance
modulation resulting from further increasing Vpot can quickly
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saturate the improvement in recognition rate (i.e., levels off at a
smaller training number), limiting the accuracy achieved in the
simulation for Vpot = 2.0 V. We note that the tuning of pre- and
postsynaptic pulses can be applied globally or selectively on the
network to enhance/decrease the learning rate of specific
neurons and/or input patterns. Thus, the tuning of the
synaptic characteristics of aligned CNT FETs presents
opportunities for developing neuromorphic systems and
unsupervised learning algorithms with adaptive and/or
selective learning properties enabled by control of the pre-
and postsynaptic pulses.

CONCLUSIONS
We have presented a synaptic transistor technology for the
implementation of large-scale neuromorphic systems, based on
the wafer-scale CMOS-compatible processing of CNT FETs
with highly aligned nanotubes with high semiconducting purity
and density. In this paper we analyze the charge-trapping
mechanisms responsible for the synaptic properties of aligned
CNT FETs and provide a detailed characterization based on
DC and pulsed measurements. We measure a large dynamic
range (i.e., >10×) with gradual long-term analog programm-
ability of conductance using potentiating and depressing
voltage pulses. The robustness of the device operation and
stability of the synaptic behavior are demonstrated with
multiple cycles of consecutive potentiating/depressing voltage
pulses and extraction of programmed conductance states. We
also show tuning of the synaptic characteristics of aligned CNT
FETs and establish trade-offs in the abruptness and stability of
conductance modulation and the dynamic range. On the basis
of the demonstrated robustness of the aligned CNT synaptic
transistor we simulate the hardware implementation of an
unsupervised learning for pattern recognition in spiking neural
networks. The simulations are validated with experimental data
from measurement-aligned CNT FET synaptic transistors and
used to analyze the recognition rate of handwritten digits from
the MNIST database. On the basis of the experimentally
demonstrated tuning of the aligned CNT FET synaptic
response, we show the impact of conductance modulation
dynamic range and abruptness on the learning rate. We show

that tuning of the CNT synaptic characteristics enables
optimizing the learning rate and achieves higher recognition
rate with a lower training number. We also discuss the tuning
of aligned CNT synaptic behavior for developing neuro-
morphic algorithms with adaptive and/or selective learning
characteristics.

METHODS
In this work, a recently improved evaporation-driven process, named
floating evaporative self-assembly,56,57 has been utilized by Carbonics
Inc. to fabricate highly aligned SWCNT devices at the wafer level.
The deposition method starts with a nanotube “ink” in organic solvent
dispensed onto a water surface. As the solution spreads, it intersects
the receiving substrate that vertically dissects the water−surface,
resulting in CNT alignment occurring at the interface. Extracting the
wafer at a controlled rate allows CNTs to coat the deposition area in a
dense, aligned monolayer. Semiconducting-nanotube inks prepared by
selective conjugated polymer sorting agents are used, leading to
exceptional (>99.9%) semiconducting purity. This method deposits
nanotubes in an unbundled, isolated morphology, making it possible
to form robust electrical contacts to each nanotube and to achieve
excellent gate-ability. Using standard processing techniques, the
nanotube arrays are fabricated into top-gated aligned CNT FETs with
high CNT density (>60 tubes/μm) and self-aligned T-shaped gate
structure that enhances gate control, helps scaling down the channel
length, and reduces parasitic capacitance (details provided else-
where).51,58
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