Supplemental Material

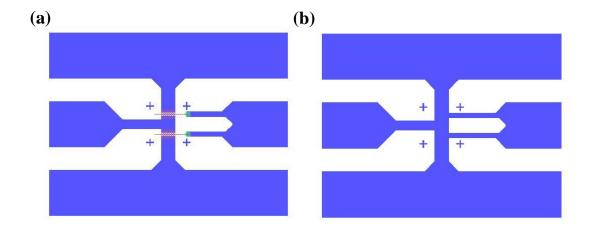
High-Performance Radio Frequency Transistors Based on Diameter-Separated Semiconducting Carbon Nanotubes

Yu Cao,^{1, a)} Yuchi Che,^{1, a)} Jung-Woo T. Seo,^{2, a)} Hui Gui,^{3, a)} Mark C. Hersam,² and

Chongwu Zhou^{1,b)}

¹Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089, USA.

²Department of Materials Science and Engineering and Department of Chemistry, Northwestern University, Evanston, IL 60208, USA.


³Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA.

a) These authors contributed equally to this work.

b) Author to whom correspondence should be addressed. Electronic mail: chongwuz@usc.edu

Open and short structures for the de-embedding process

Fig. S1 shows the open and short structures for the de-embedding process. The asshown de-embedding structures remove the parasitic effects from the bonding pads and the fringe capacitances associated with the gate, and provide the upper-limit of the performance for the carbon nanotubes with a refined average diameter of ~ 1.6 nm.

FIG. S1 (a) Open structure for the de-embedding process. (b) Short structure for the de-embedding process.

Detailed comparisons of this work with reference 11 and 12 in the manuscript

reference	diameter separation?	semiconducting purity	device structure	channel length (nm)	g _m (μS/μm)	r _o (kΩ•µm)	extrinsic f _t (GHz)	extrinsic f _{max} (GHz)
this work	Yes, 1.6 nm in average	99%	T-gate	120	55	100	23	20
11	No, 1.4 nm in average	99.99%	T-gate	120	40	200	22	19
12	No, 1.4 nm in average	98%	T-gate	140	20	60	12	8

SI: comparisons of nanotube transistors with the same T-shaped gate device structure

11. Y. Cao, Y. Che, H. Gui, X. Cao, and C. Zhou, Nano Res. 9 (2), 363 (2016).

12. Y. Che, A. Badmaev, A. Jooyaie, T. Wu, J. Zhang, C. Wang, K. Galatsis, H. A. Enaya, and C. Zhou, ACS Nano **6** (8), 6936 (2012).