## Black Phosphorus Gas Sensors

Ahmad N. Abbas <sup>‡,¶</sup>, Bilu Liu <sup>‡</sup>, Liang Chen <sup>‡</sup>, Yuqiang Ma <sup>‡</sup>, Sen Cong <sup>‡</sup>, Nappodal Aroonyade <sup>‡</sup> Marianne Köpf<sup>#</sup>, Tom Nilges<sup>#</sup>, Chongwu Zhou <sup>‡\*</sup>

Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089,United States

¶ Department of Electrical Engineering, University of Jeddah, Abdullah Sulayman St, Jeddah 22254, Saudi Arabia

<sup>#</sup>Technische Universität München, Department of Chemistry, Lichtenbergstraße 4, Garching b. München 485748, Germany

\* Email: <u>chongwuz@usc.edu</u>

**Supporting Information** 



Figure S1. Stability of thin BP flake FET. a)  $I_d$ - $V_g$  curve of a ~10 nm flake BP FET under a 50 mV  $V_d$  before failing. (b) Optical image of the device in (a) after repeated measurements in air showing a breaking point in the BP channel pointed by a red arrow.



Figure S2. Vertical transport in multilayer BP flakes. a, c) Optical microscope image of a vertical FET comprised of a bottom monolayer CVD graphene electrode/BP/top (Ti/Au) electrode with a  $P^{++}$  Si/ 300 nm SiO<sub>2</sub> back gated structure. Dashed line is a guide to the eye of the monolayer CVD graphene border. b, d) I<sub>d</sub>-V<sub>G</sub> curves for the devices in (a) and (c) respectively under V<sub>d</sub>=0.2 V.



Figure S3. Repeatability of BP sensor. (a) Relative conductance change ( $\Delta G/G_0$ ) vs. time in seconds for a multilayer BP sensor for a first time sensing and b) For a second time showing similar response to various concentrations of NO<sub>2</sub>.