Supporting information Screen Printing as a Scalable and Low-cost Approach for Rigid and Flexible Thin-Film Transistors Using Separated Carbon Nanotubes Xuan Cao 1 , Haitian Chen 2 , Xiaofei Gu 1 , Bilu Liu 2 , Wenli Wang 2 , Yu Cao 2 , Fanqi Wu 1 and Chongwu Zhou $^{1,\;*}$ - ¹ Department of Materials Science, University of Southern California, Los Angeles, CA90089, USA. - ² Department of Electrical Engineering, University of Southern California, Los Angeles, CA90089, USA. ### 1. Study of capillary effect on thicknesses of printed BTO layers Figure S1. Schematic diagrams and SEM images illustrate the capillary effect on BTO ^{*}To whom correspondence should be addressed. E-mail chongwuz@usc.edu layers printed with different dilution conditions. (a) Source and drain were printed with diluted silver ink ($V_{sol}/V_{ink}=1:4$) and then diluted BTO ink ($V_{sol}/V_{ink}=1:4$) was printed as gate dielectric. (b) Source and drain were printed with diluted silver ink ($V_{sol}/V_{ink}=1:3$) and then diluted BTO ink ($V_{sol}/V_{ink}=1:4$) was printed as gate dielectric. The result shows a thinner BTO layer (~5 µm) in (b) compared with the BTO layer (~ 6.5 µm) in (a). ### 2. Study of profile of printed layers Figure S2. Profiles of printed electrode (a) using 1:3 silver ink, dielectric layer (b) using 1:4 BTO ink, and gate (c) using undiluted silver ink, showing approximate thickness \sim 3.3 μ m, 5.1 μ m, and 9.8 μ m, respectively. ### 3. Study of gate leakage current Figure S3. Gate leakage current of a presentative printed SWCNT TFT as a function of gate voltage at $V_{DS} = -1$ V. # 4. Statistical study of screen-printed SWCNT TFTs Figure S4. Statistical analysis of 15 fully screen printed SWCNT TFTs showing (a) field-effect mobility, (b) current on/off ratio, (c) on-current density, and (d) threshold voltage (V_{th}). The calculated average values and standard deviations are included in each figure. # 5. OLED structure Figure S5. Schematic diagrams showing the structure of the external OLED with aluminum (Al) \sim 100 nm, LiF \sim 1 nm, tris (8-hydroxyquinoline) aluminum (Alq₃) \sim 40 nm, 4,4'-bis[N- (1-naphthyl) -N-phenylamino]biphenyl (NPD) \sim 40 nm and ITO.