Electronic Supplementary Material

Threshold voltage tuning and printed complementary transistors and inverters based on thin films of carbon nanotubes and indium zinc oxide

Pattaramon Vuttipittayamongkol^{1,†,§}, Fanqi Wu^{2,§}, Haitian Chen¹, Xuan Cao², Bilu Liu¹, and Chongwu Zhou^{1,2} (云)

Supporting information to DOI 10.1007/s12274-014-0596-7

1 Histograms of normalized on-current ($I_{on} \times L/W$), current on/off ratio (I_{on}/I_{off}), and field-effect mobility of carbon nanotube thin film transistors (CNT TFTs) with Ti/Au and Ti/Pd source and drain (S/D) metal contacts

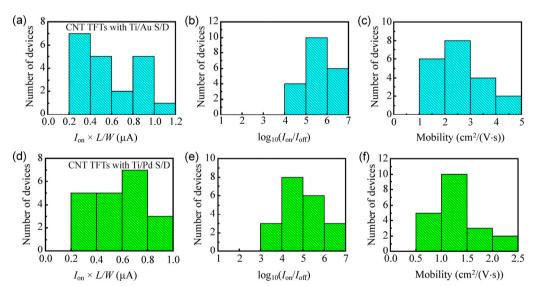
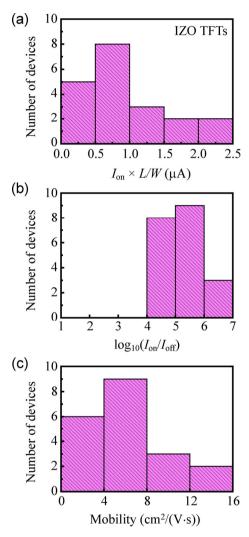


Figure S1 Histograms of normalized on-current, current on/off ratio, and field-effect mobility of 20 CNT TFTs with Ti/Au S/D metal contacts and 20 CNT TFTs with Ti/Pd metal contacts. (a) Histogram of normalized on-current measured from 20 CNT devices with Ti/Au S/D metal contacts. (b) Histogram of current on/off ratio of the same 20 CNT devices, with 16 of the devices showing on/off ratios between 1×10^5 and 1×10^7 . (c) Histogram of field-effect mobility of the 20 CNT devices showing the average mobility of 2.35 cm²/(V·s), with 8 of the devices showing mobility between 2 and 3 cm²/(V·s). (d) Histogram of normalized on-current of 20 CNT devices with Ti/Pd S/D metal contacts. (e) Histogram of current on/off ratio of the same 20 CNT TFTs, with nine of the devices showing on/off ratios between 1×10^5 and 1×10^7 . (f) Histogram of field-effect mobility measured from the same 20 CNT TFTs showing the average mobility of $1.17 \text{ cm}^2/(\text{V·s})$, with 10 of the devices showing mobility between 1.0 and $1.5 \text{ cm}^2/(\text{V·s})$.

Address correspondence to chongwuz@usc.edu


¹ Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089, USA

² Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA

 $^{^\}dagger$ Present address: School of Information Technology, Mae Fah Luang University, Chiang Rai 57100, Thailand

[§] These authors contributed equally to this work.

2 Histograms of normalized on-current, current on/off ratio, and field-effect mobility of 20 indium zinc oxide (IZO) TFTs

Figure S2 Histograms of normalized on-current, current on/off ratio, and field-effect mobility of 20 IZO TFTs. (a) Histogram of normalized on-current of 20 IZO TFTs. (b) Histogram of current on/off ratio measured for the same 20 IZO devices, with 12 of the devices showing on/off ratios between 1×10^5 and 1×10^7 . (c) Histogram of field-effect mobility of the 20 IZO devices showing the average mobility of 5.86 cm²/(V·s), with nine of the 20 devices showing mobility between 4 and 8 cm²/(V·s).