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Figure S1. Raman spectrum of monolayer graphene used in this study. Laser wavelength is 514 nm. 

 

 

 

 

 

1500 2000 2500 3000

 

 

In
te
n
s
it
y
 (
a
.u
.)

Raman Shift (cm
-1
)



3 

 

 

 

Figure S2. a) D-band and b) G-band peak positions vs. the widths of GNR arrays. 
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Figure S3. a) An optical image of a HIBL patterned device after etching GNR showing a color contrast under 

the patterned area due to helium ion bombardment. b) Monte Carlo simulation of helium ions, with 30 KeV 

energy, scattering into the substrate used in this work. Each red line trace represents the scattering path of a 

single helium ion. c) Energy band diagram showing the effect of defect states on Fermi level modulation in the 

GNR array channel (i.e. blue lines) created by energetic helium ions in the SiO2. Green and red dashed lines 

represent the Fermi levels in both the P
++

 Si back gate and GNR arrays as the gate voltage (VGS) is swept to 

positive and negative values, respectively. 
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Figure S4. Output characteristics of the 5 nm half-pitch GNR array device while subject to a control experiment 

to examine the device drift over time. In the experiment, nitrogen (a) and argon (c) was flowed with a 

constant flow rate and measurements were repeated every 1000 seconds. b, d) Conductance changes (∆G/G0) 

of devices in (a) and (c) as a function of time when subjected to nitrogen (b) and argon (d).   
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Figure S5. (a) Transport characteristics of 15 nm wide HIBL GNR array showing ON current of 4 µA and (b) 

Measured conductance of 15 nm, 10 nm, and 6 nm wide HIBL GNR at a gate voltage of -15 V. The linear 

equation conductance fit (G= σ(W-W0)/L) yielded a W0 of 5.6 nm. 
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