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Alkaline metal-doped n-type semiconducting nanotubes as quantum dots
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A 0.4 um long semiconducting single-walled carbon nanotube is dopedhirtype by potassium

(K) vapor. Electrical measurements of the doped nanotube reveal single-electron charging at
temperatures up to 160 K. The K-doped sample manifests as a single quantum dot or multiple
quantum dots in series depending on the range of applied gate voltage. This is explained by an
inhomogeneous doping profile along the nanotube length. Similarities between K-doped nanotubes
and silicon-based quantum dots and the possibility of room-temperature nanotube single-electron
transistors are discussed. @00 American Institute of Physids$S0003-695(00)01950-1]

The electrical properties of carbon nanotubes are of sigrecovery{Fig. 2(@)] corresponds to the-type to intrinsic and
nificant fundamental and practical interé$danotubes could to n-type transitions of the system.
be utilized for molecular scale electronic devices including  The n-type semiconducting behavior of the doped
single-electron transistors(SET9.2 Previously, single- SWNT is clearly seen in the conductand8)(versus gate
electron charging has been observed in individual metalliwvoltage (V4) curves(Fig. 3 recorded under a biag=1 mV
single-walled carbon nanotuld€WNT) samples with high (incremental step inV4=25 mV) at various temperatures.
contact resistance at low temperaties. The conductance of the sample increases nearly monotoni-

This letter reports the results of electrical measurementsally with Vg, although noise-like fluctuations exist. The
of alkaline metal-doped semiconducting SWNTs and obsereonductanceG under a givenV, at various temperatures
vation of Coulomb blockade at temperatures up to 160 Kappears to followG~exp(—E,/kgT) (Fig. 3 insel, with an
Our work was intended to elucidate chemical doping effectsactivation barriefs,~32 meV forVy=0 for T between 290
to the electrical properties of individual SWNTs. SWNT and 40 K. This result points to thermally activated transort
doping with electron withdrawing (Brl,) and donating spe- and energy barriers existing in the system.
cies(K, Cs) were carried out earlier with bulk SWNT méts Conductance oscillations M is observed in Fig. 3 for
and individual rope&?® T=<160 K. We have focused on the oscillation region and

Samples of individual SWNTs are obtained as describedecordedG—-V, curves with a small incremental stépmV)
earlier’®*?Figure 1 shows ouin situ alkaline-metal doping in V, under a blasv 0.5 mV (Fig. 4). Several features are
setup and the nanotube sample used in this study. Thﬁeen over variou¥y regimes. In regime 1, between—1
SWNT has a diameter2.5 nm and lengts 0.4 um between  and~0.75 V), oscillation peaks iV is reasonably periodic
the edges of two Au/Ti electrodes. Potassium doping of thend evenly spaced &V ~0.45 V. In regime Il, the oscil-
SWNT is carried out inside a cryostat insert designed fodations are periodic witl\V,~0.45 V at high temperatures
variable temperature electrical measurements by using lut some of the peaks split into doublets at low temperatures
“potassium dispenser'{SAES Getters USA Inc., Colorado (T<110 K). In regime lll, periodic oscillations are observed
Springs, CQ. The dispenser consists of a potassium salt ananly at T<90 K with a small period oAV;~0.15 V.
resistive heater, and is placed at about 1 cm away from the The conductance oscillations are due to single-electron
sample surfacéFig. 1). Resistive heating of the dispenser chargind”*®through a doped nanotube quantum dot system.
causes the metal salt to decompose into atomic potassiur@onductance versug, (in regime ) andV shown in Fig.
The potassium evaporates from the dispenser and absorb&) recorded af =80 K exhibits diamond structures that are
onto the SWNT. During doping, the vacuum inside the insert
is maintained at ¥ 10~ ° Torr by a turbo pump. The current A
passed through the dispenser for resistive heating is 4.5 am- (a) ’_‘
peres and the time duration for the doping is 2.5 h.

Figure Za) shows the evolution of sample conductance
as a function of time during K doping. Prior to K doping,
the  nanotube  exhibited p-type  semiconducting \
characteristicS®as positive gate voltage caused the Fermi
level shifting away from the valence band into the band gap,

and turned the system into insulating stdteig). 2(b) inse. N

After K doping, the system becametype with the Fermi ™ cryostat insert

level close to the conduction band due to electron donation K-dispenser

by K [Fig. 2(b)]. The sharp conductance drop followed by L | j&—— feedthrough for dispenser

FIG. 1. (a) Schematic K-doping setupb) Tapping mode atomic force mi-
3Electronic mail: hdai@chem.stanford.edu croscopy image of a Ti/Au contacted SWNT.
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FIG. 2. (a) G vs time () during K doping. Data obtained with bias=100
mV underV,=0. (b) |-V curves recorded at various gate voltages after K o .
doping. Inseti—V curves recorded prior to K doping. oscillations typically become smeared out by thermal energy

at T=U/4K,*® which appears to be true in our case since

signatures of Coulomb blockad®In this regime, we can YU/4Kg~160 K. . .

consider the system as dominant by a single quantum dot. For U~50 meV, the size of the quantum dot seen in

The change oAV, by ~0.45 V causes one electron addition régime | appears smaller than the tube length0.4 um

or removal from the dot, the gate capacitance is therefor8etween the edges of metal electrodes. PFEVIOUS work by
—e/AV,=0.35 aF. The two boundaries of a diamond ex-Tanset al. observed) =2.6 meV f0f|— 3 um,® while Nyg-

hlblt different slopes ¢V, /dV) becauseC,#C, whereC,  ardet al. foundU~5 meV/L (um).> Comparison with these

andC, are the capacitances at the source and drain sides ofsults suggests that the dot in regime | has an effective

the quantum dotC,; andC, can be estimated from the slopes length of L¢~0.1-0.15um, about one third of the actual

of dV4/dV lines at the diamond boundari¥sWe find  geometry of the nanotube. This can be explained by an in-

Cy/C1=0.28, —C4/C,=-0.17 and thusC;=1.25 aF, homogeneous K-doping profile along the nanotube. Fluctua-

C,=2.12 aF. The total capacitance of the systemCis tions in the amount of K atoms deposited at various positions

=C;+C,+Cy=3.72 aF, which yields a charging energy of along the nanotubes can cause the conduction bERHtO

U=e’/Cy= 43 meV. The charging energy can also be estifluctuate relative to the Fermi leveE{) (Fig. 4). In regime
mated from the Coulomb blockadleV curve shown in Fig.

5(b) to be ~50 meV, close to the value obtained from total
capacitance estimate. Figuréobshows that Coulomb block-
ade is completely lifted at a certain gate voltage. Coulomb
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[, a portion of the tube with length-L.¢ is heavily doped the geometrical tube length. This can occur when the two
and hass; belowEg . Transport through the system is domi- barriers for the dot are located within the length of the tube.
nant by this portion acting as a quantum dot. At higher gatél'o obtain high temperature nanotube SETSs reliably, it is de-
voltages in regime IIE. of the other portion of the tube is sired to obtain samples with 10—-50 nm tube lengths and have
shifted belowEg . The system behaves as multigfossibly  high chemical homogeneity along the lengths.

two) dots in serie€*?%in this regime. In regime lII, periodic _
oscillation peaks G-V, are closely spaced atV,~0.15 _ The authors thank C. Quate and T. ngqlle for discus-
V (Fig. 4), about one third of the period in regime 1. This sions, and D: Rosenberg, A. Kerman, Y. Hishinuma, and A.
could be due t&, throughout the tube is shifted beldgy. , Dana for assstance.l This work was supported by NS_F, SRC/
and the nanotube merges into a large quantum dot witfylotorola, and a Lucille and David Packard Fellowship.
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