¹ High performance In₂O₃ nanowire transistors using organic gate ² nanodielectrics Sanghyun Ju, ¹ Fumiaki Ishikawa, ² Pochiang Chen, ² Hsiaokang Chang, ² Chongwu Zhou, ² Young-geun Ha, ³ Jun Liu, ³ Antonio Facchetti, ³ Tobin J. Marks, ³ and David B. Janes^{4,a)} ¹Department of Physics, Kyonggi University, Suwon, Kyonggi-Do 442-760, Republic of Korea ²Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089 USA Department of Chemistry and the Materials Research Center, and the Institute for Nanoelectronics and Computing, Northwestern University, Evanston, Illinois 60208-3113, USA 4School of Electrical and Computer Engineering, and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA (Received 20 December 2007; accepted 7 May 2008) We report the fabrication of high performance nanowire transistors (NWTs) using In_2O_3 nanowires as the active channel and a self-assembled nanodielectric (SAND) as the gate insulator. The SAND-based single In_2O_3 NWTs are controlled by individually addressed gate electrodes. These devices exhibit n-type transistor characteristics with an on current of $\sim 25~\mu A$ for a single In_2O_3 nanowire at $2.0V_{ds}$, $2.1V_{gs}$, a subthreshold slope of 0.2 V/decade, an on-off current ratio of 10^6 , and a field-effect mobility of $\sim 1450~\text{cm}^2/\text{V}$ s. These results demonstrate that SAND-based In_2O_3 NWTs are promising candidates for high performance nanoscale logic technologies. © 2008 American Institute of Physics. [DOI: 10.1063/1.2937111] 20 21 9 12 13 14 15 16 17 18 19 Recently, there have been several studies of nanowire 22 23 transistors (NWTs) aimed at achieving high performance and 24 reliable transistor response characteristics. One potential ap-25 plication of NWTs is to replace polysilicon (poly-Si) or 26 amorphous-silicon (α -Si) thin-film transistors (TFTs) cur-27 rently used in displays, sensors, solar cells, and other opto-28 electronic devices. 1-4 NWTs have several attractions versus 29 poly-Si TFTs and α -Si TFTs, in terms of high mobility, op-30 tical transparency (for large band-gap nanowires), and me-31 chanical flexibility. These characteristics could allow higher 32 frequency TFT operation and enable flexible/transparent 33 electronics. For instance, future light-emitting diode-based 34 displays could be integrated with optically transparent win-35 dows and/or operate at far lower power by enhancing the 36 pixel aperture ratio. The latter parameter can be increased, 37 for a given pixel spacing, by either stacking transparent TFT **38** layers or significantly reducing the area required for the drive 39 transistor. However, consideration of the NW-based device 40 performance metrics reported to date reveals that there is 41 significant room for improvement before NWT-derived driv-42 ing and switching elements can be assembled into useful 43 electronic circuits. Among several possible semiconducting 44 nanowire materials, In₂O₃ is one of the most promising be-45 cause of its easy access, chemical stability, and wide band 46 gap (3.6 eV). ⁵⁻⁸ This combination of unique materials prop-47 erties and the fundamental advantages of the quasi-one-48 dimensional nanowire electronic structure underscore the po-49 tential of In₂O₃ NWTs for advanced electronic applications 50 requiring high transistor performance, optical transparency, 51 and mechanical flexibility. In this study, we report signifi-52 cantly enhanced performance metrics for NWTs consisting 53 of individual In₂O₃ nanowires as channels combined with a **54** self-assembled organic nanodielectric (SAND) as the gate 55 insulator. The present SAND-based In₂O₃ NWTs demonstrate considerable advances in performance over previously ⁵⁶ reported NWTs employing In_2O_3 or other mid/wide bandgap ⁵⁷ NWTs, especially in terms of greatly improved field-effect ⁵⁸ mobility and high on-current densities. ^{10–16} ⁵⁹ A cross-sectional view of the present NWT structure is 60 shown in Fig. 1(a). Starting with a Corning 1737 glass sub- 61 strate coated with a 500 nm SiO₂ buffer layer, individually 62 addressable, transparent indium tin oxide (ITO) bottom-gate 63 electrodes were deposited by ion-assisted deposition and 64 photolithographically patterned. This individually address- 65 able gate structure affords a high level of circuit integration 66 FIG. 1. (Color online) SAND-based In_2O_3 NWTs. (a) Cross-sectional view of the device structure. (b) Top-view FE-SEM images of the device region. Scale bar=1.5 μ m. (c) Source/nanowire/drain cross-section band diagram at $V_{\rm gs}$ =0 V. ^{a)}Author to whom correspondence should be addressed. Electronic addresses: janes@ccn.purdue.edu and david.b.janes.1@purdue.edu. 2 Ju et al. Appl. Phys. Lett. **92**, 1 (2008) 67 using NWTs. The SAND gate dielectric (\sim 15 nm) was then 68 deposited using a layer-by-layer wet chemical process and 69 provides a large capacitance of ~180 nF/cm² with an elec-**70** tric breakdown field of \sim 7 MV/cm. The conformal SAND 71 provides excellent edge coverage, resulting in low interlayer 72 leakage in the gate and source-drain overlap regions. This 73 high performance gate dielectric allows the channel potential 74 to be modulated at relatively low gate voltages. The In₂O₃ **75** nanowires, which were synthesized via laser ablation, ¹⁰ are **76** not intentionally doped, but are believed to be lightly *n* type. 77 The nanowires were suspended in isopropanol solution and 78 then deposited onto the patterned substrates. Aluminum **79** source/drain electrodes (\sim 130 nm) were then deposited by 80 electron-beam evaporation. Figure 1(b) shows a field-81 emission scanning electron (FE-SEM) micrograph of a single 82 In₂O₃ nanowire confined between the source/drain elec-83 trodes. The diameter and length of the In₂O₃ nanowires are 84 20 nm and 1.5 μ m, respectively. The corresponding band 85 diagram (source/NW/drain cross section for an aluminum **86** contact structure) for a NWT at V_{gs} =0 V is shown in Fig. **87** 1(c). The electron affinity of In_2O_3 ($\chi_{In_2O_2}$) is 3.7 eV, and the 88 bulk Fermi level position for moderate doping is estimated to 89 be $(E_e - E_f) = 0.6$ eV, yielding an effective work function **90** $\Phi_{\text{In}_2\text{O}_3}$ =4.54 eV for *n*-type material. Al source/drain contacts **91** $(\Phi_{Al} = 4.28 \text{ eV})$ are therefore expected to form relatively low 92 interface barrier heights to n-type In_2O_3 NWs. The present In_2O_3 NWTs exhibit excellent *n*-type tran-94 sistor characteristics. All the NWT performance parameters 95 reported here correspond to devices treated with ozone on 96 the nanowire regions 17 with O_2 plasma polishing on the 97 source-drain contact region to maximize device performance. 98 Figure 2(a) shows the drain current versus gate-source volt-99 age $(I_{ds}-V_{gs})$ characteristics for a representative single In_2O_3 100 NWT, on both linear and semilog scales, as well as the mea-101 sured field-effect mobility inferred from the transconduc-**102** tance (g_m) at the respective gate voltage. The device exhibits **103** a subthreshold slope (S) of 0.2 V/decade, an on-off current **104** ratio $(I_{\rm on}/I_{\rm off})$ of 10^6 , and a threshold voltage $(V_{\rm th})$ of 0.0 V. 105 The drain current versus drain-source voltage $(I_{\rm ds}-V_{\rm ds})$ char-106 acteristics of a representative NWT are shown in Fig. 2(b). 107 These devices exhibit no evidence of saturation of the I_{ds} in 108 the investigated potential bias range and exhibit an I_{on} 109 \sim 25 μ A for the single In₂O₃ nanowire at $V_{\rm ds}$ =2.0 V, $V_{\rm gs}$ 110 = 2.1 V, respectively. Although a possible mechanism for the 111 nonideal I_{ds} - V_{ds} curve at high gate voltages might be as-112 cribed to nanowire body leakage, in fact the measured leak-113 age current through the SAND layer is only 30–40 pA at 114 4 V, indicating negligible leakage current through the gate 115 dielectric. In order to allow direct comparison to other re-116 ported transistor performance data, including other NWTs, 117 $I_{\rm on}$ can be expressed in terms of a current density of ~ 8 118 $\times 10^6$ A/cm², assuming uniform current flow throughout the 119 nanowire cross section. The current per unit channel width is 120 greater than 1 mA/ μ m, considering only the diameter of the 121 nanowire. Importantly, this current level for a single nano-122 wire is sufficient to drive a $176 \times 54 \ \mu \text{m}^2$ size AMOLED **123** pixel at 300 cd/m² in current-generation electroluminescent 124 technologies. The field-effect mobility is extracted from the measured 126 g_m and the calculated gate-to-channel capacitance $(C_i$ 127 = $2\pi\varepsilon_0k_{\rm eff}L/\cosh^{-1}(1+t_{ox}/r))$ using $\mu=dI_{\rm ds}/dV_{\rm gs}\times L^2/C_i$ PROOF260PY/06/182 Where the effective dielectric constant of SAND FIG. 2. (Color online) Measured characteristics of a representative SAND-based In_2O_3 NWT. (a) Drain current versus gate-source voltage $(I_{ds}-V_{gs})$ characteristics at V_d =0.5 V. Green, red, and blue data points correspond to linear-scale $I_{ds}-V_{gs}$, log-scale $I_{ds}-V_{gs}$, and and mobility μ . (b) Drain current vs drain-source voltage $(I_{ds}-V_{ds})$ characteristics for various values of V_{gs} (-0.3 to 2.1 V in 0.3 V steps). $(k_{\rm eff})$ is ~ 3.0 , the device channel length (L) is $\sim 1.5 \ \mu {\rm m}$, and 129 the radius (r) of the In_2O_3 NW is 10 nm. The measured g_m at 130 V_d =0.5 V, along with a Gaussian fit to the data, is illustrated 131 in Fig. 3(a). The g_m peaks at $\sim 5.87 \mu \text{S}$, at $V_g \sim 1 \text{ V}$, and 132 falls off with increasing gate voltage. The corresponding μ is 133 plotted versus gate bias in Fig. 2(a) and varies from 134 \sim 1450 cm²/V s to \sim 300 cm²/V s over the measured gate 135 bias range. The peak mobility values of two other devices 136 with from the same sample batch, with nominally identical 137 structures, are ~ 1200 and $1170 \text{ cm}^2/\text{V}$ s The peak value, 138 which is typically quoted as the mobility in comparable de- 139 vices, significantly exceeds In_2O_3 NW mobilities (μ 140 = 6.93–279 cm²/V s) reported in other devices ^{10–13} and in 141 single-crystal In_2O_3 (~160 cm²/V s). ¹⁸ It is expected that 142 the NW single-crystal nature along with the quasi-one- 143 dimensional electronic structure, which inhibits low-angle 144 scattering, contributes to the very large FET mobility. In ad- 145 dition, the SAND gate dielectric has previously been found 146 to enable high performance in other oxide NWs. 19 Several aspects of the observed current-voltage charac- 148 teristics can be attributed to the effects of the contacts. While 149 an ideal long-channel metal-oxide-semiconductor field-effect 150 transistor (MOSFET) model describes the low $V_{\rm ds}$ data, the 151 behavior at large $V_{\rm ds}$ deviates from the ideal MOSFET model 152 both in terms of the nonsquare law relationship versus $V_{\rm gs}$ 153 and the relatively large drain conductance. Based on calcu- 154 lated electrostatic screening lengths, 20 the characteristic 155 length over which the bands bend at the metal- 156 semiconductor (M-S) contact interface, as illustrated in Fig. 157 1(c), is estimated to be \sim 30 nm. This characteristic length 158 Appl. Phys. Lett. 92, 1 (2008) 1-3 Ju et al. FIG. 3. (Color online) (a) Measured transconductance (g_m) at $V_{ds}=0.5$ V, along with a Gaussian fit to the data. (b) Measured channel conductance (g_d) vs $V_{\rm gs}$, with various curves corresponding to steps in $V_{\rm ds}$ from 0.0 to 1.8 V 159 would be reduced by channel charge induced by the gate 160 potential or due to donor doping, which typically arises from 161 oxygen vacancies in metal-oxide semiconductors. For this 162 range of barrier thicknesses, it is expected that the contact 163 behavior would be dominated by thermionic-field 164 emission,²¹ which would yield a nonlinear current-voltage 165 characteristic for the M-S contacts. A prior study on NW **166** transistors indicated that the effects of such a barrier in series 167 with the channel included a roll-off in transconductance with 168 increasing gate bias, 22 comparable to that observed in the 169 present study. Figure 3(b) shows the measured channel con-170 ductance (g_d) versus gate voltage for various values of V_d . 171 Linear series/contact resistance effects, would be expected to 172 result in a saturation of g_d with increasing V_g . ²³ However, no 173 saturation is observed, indicating that linear series resistance 174 effects are not dominant factors in the current-voltage (I-V)175 characteristics over the present bias range. The curves in Fig. 176 3(b) for low V_d values are somewhat superlinear, likely due 177 to increasing conductance of the M-S contact barriers with 178 increasing gate bias. These observations are consistent with 179 the modest, but nonzero, M-S contact barrier illustrated in **180** Fig. 1(c). In conclusion, high performance, transparent NWTs 182 have been fabricated using single In₂O₃ nanowires as the 183 active channel, a SAND layer as the gate insulator, aluminum as source-drain electrodes, and ITO as the gate elec- 184 trode. The single In₂O₃ NWTs were operated by individually 185 addressable gate electrodes, which represents a significant 186 advance toward circuit fabrication, and outstanding NWT de- 187 vice performance metrics were obtained using a SAND gate 188 dielectric and proper processing of the In₂O₃ nanowire. As a 189 result, we achieved significantly enhanced In₂O₃ NWT de- 190 vice performance and a significantly greater mobility than 191 observed in poly-Si TFTs and α -Si TFTs. Since it is desirable 192 to obtain high μ and a steep S to fabricate rapid-switching 193 transistors and high-speed logic circuits, these results indi- 194 cate that SAND-based In₂O₃ NWTs can support the require- 195 ments of such devices. This work was supported in part by the NASA Institute 197 for Nanoelectronics and Computing under Grant NCC-2-198 ``` ¹J. Xiang, W. Lu, Y. Hu, Y. Wu, H. Yan, and C. M. Lieber, Nature (London) 200 441, 489 (2006). ²Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, Nano Lett. 3, 202 149 (2003). ³S. N. Cha, J. E. Jang, Y. Choi, G. W. Ho, D.-J. Kang, D. G. Hasko, M. E. 204 Welland, and G. A. J. Amaratunga, Proceedings of the 38th European 205 Solid-State Device Research Conference, 2005 (unpublished), Vol. 217. ⁴W. Kim, A. Javey, R. Tu, J. Cao, Q. Wang, and H. Dai, Appl. Phys. Lett. 207 87, 173101 (2005). ⁵K. Sreenivas, T. S. Rao, and A. Mansingh, J. Appl. Phys. 57, 384 (1985). 209 ⁶Y. Shigesato, S. Takaki, and T. Haranoh, J. Appl. Phys. 71, 3356 (1992). 210 ⁷J. Tamaki, C. Naruo, Y. Yamamoto, and M. Mastuoka, Sens. Actuators B 211 83, 190 (2002). 212 M. Liess, Thin Solid Films 410, 183 (2002). 213 M.-H. Yoon, A. Facchetti, and T. J. Marks, Proc. Natl. Acad. Sci. U.S.A. 214 102, 4678 (2005). ¹⁰C. Li, D. Zhang, S. Han, X. Liu, T. Tang, and C. Zhou, Adv. Mater. 216 (Weinheim, Ger.) 15, 143 (2003). ¹¹B. Lei, C. Li, D. Zhang, T. Tang, and C. Zhou, Appl. Phys. A: Mater. Sci. 218 Process. 79, 439 (2004). 219 ¹²D. Zhang, C. Li, S. Han, X. Liu, T. Tang, W. Jin, and C. Zhou, Appl. Phys. 220 Lett. 82, 112 (2003). 221 ¹³N. Pho, H. T. Ng, T. Yamada, M. K. Smith, L. Jun, H. Jie, and M. 222 Meyyappan, Nano Lett. 4, 651 (2004). ¹⁴S. N. Cha, J. E. Jang, Y. Choi, G. A. J. Amaratunga, G. W. Ho, M. E. 224 Welland, D. G. Hasko, D.-J. Kang, and J. M. Kim, Appl. Phys. Lett. 89, 225 263102 (2006). ¹⁵T.-H. Moon, M.-C. Jeong, B.-Y. Oh, M.-H. Ham, M.-H. Jeun, W.-Y. Lee, 227 and J.-M. Myung, Nanotechnology 17, 2116 (2006). ¹⁶Y. W. Heo, L. C. Tien, Y. Kwon, D. P. Norton, S. J. Pearton, B. S. Kang, 229 and F. Ren, Appl. Phys. Lett. 85, 2274 (2004). 230 ¹⁷S. Ju, K. Lee, D. B. Janes, M.-H. Yoon, A. Facchetti, and T. J. Marks, 231 Nanotechnology 18, 155201 (2007). 232 ¹⁸R. L. Weiher, J. Appl. Phys. 33, 2834 (1962). 233 ¹⁹S. Ju, K. Lee, D. B. Janes, M.-H. Yoon, A. Facchetti, and T. J. Marks, 234 Nano Lett. 5, 2281 (2005). ²⁰R.-H. Yan, A. Ourmazd, and K. F. Lee, IEEE Trans. Electron Devices 39, 236 1704 (1992). 237 ²¹F. A. Padovani and R. Stratton, Solid-State Electron. 9, 695 (1966). 238 ²²J. Appenzeller, J. Knoch, E. Tutuc, M. Reuter, and S. Guha, Proceedings 239 of 2006 Intl. Elect. Dev. Meeting (IEDM), IEEE, 2006 (unpublished), 240 241 ²³Z. Yu and P. J. Burke, Proc. SPIE 5790, 246 (2005). ``` 242